Articles

Radiolaires et cycle du silicium : les travaux de Natalia Llopis-Monferrer sous les projecteurs !

L’American Geophysical Union (AGU) a déclaré “Research Spotlight” le récent article de Natalia Llopis-Monferrer paru dans “Global Biogeochemical Cycles” sur l’importance des radiolaires (organismes planctoniques marins) dans le cycle du silicium de l’océan mondial.

Ces récents travaux réévaluent le rôle de ces minuscules protistes qui pourraient contribuer à près d’un cinquième de la production mondiale de silice par des organismes marins.

Natalia Llopis-Monferer, de nationalité espagnole, est étudiante au LEMAR (UMR 6539) de l’IUEM-UBO. Elle est co-encadrée par Aude Leynaert (CNRS), Fabrice Not (SBR) et Paul Tréguer (UBO).

Lire l’article d'”EOS” (Sciences News by AGU)

Les squelettes d’éponges, un puits important de silicium dans l’océan

Le silicium (Si) est un élément essentiel dans le fonctionnement biogéochimique et écologique de l’océan. On pense que le cycle marin actuel du Si est en équilibre, c’est-à-dire que les apports à l’océan égalisent les sorties. Les apports proviennent majoritairement des rivières, et les sorties étaient considérées comme résultant essentiellement de l’enfouissement des squelettes de diatomées dans le sédiment. Dans cet article, nous montrons que des organismes non phototrophes, tels que les éponges et les radiolaires, avec leur squelette de silice, participent également de façon significative à l’enfouissement de Si au fond de l’océan. L’examen microscopique et le dosage des sédiments prélevés sur 17 sites à travers le monde ont révélé que le squelette des éponges est exceptionnellement résistant à la dissolution, et était passé inaperçu dans les inventaires biogéochimiques des sédiments. La conservation des spicules d’éponges dans les sédiments est de 45,2 %, alors qu’il est seulement de 6,8 % pour les tests de radiolaires et de 8,0 % pour les frustules de diatomées. Au total, les éponges séquestreraient 1,71 Tmol de Si an-1. Les radiolaires auraient une contribution minime avec 0.09 Tmol de Si an−1.  Collectivement, ces deux organismes non phototrophes augmentent le puits de silice de 28% et contribue à rétablir l’équilibre du cycle de la silice dont les apports dépassaient les sorties.

References

Maldonado, M., López-Acosta, M., Sitjà, C., García-Puig, M., Galobart, C., Ercilla, G., & Leynaert, A. (2019). Sponge skeletons as an important sink of silicon in the global oceans. Nature Geoscience. https://doi.org/10.1038/s41561-019-0430-7

 

Accédez à la publication

 

Cette publication a fait l’objet d’un article dans Le Monde, retrouvez-le ici

Séminaire de Daniel Conley (Lund University, Sweden) le 29 avril prochain

Le 29 avril prochain à 10h en salle A215 (IUEM) nous accueillerons Daniel Conley de l’Université de Lund en Suède qui viendra nous présenter ses travaux portant sur le thème suivant:

Constraining variations in the global biogeochemical silica cycle through geologic time.

Résumé de sa présentation :

Il est largement reconnu que l’émergence et l’expansion de la biominéralisation du silicium dans les océans ont affecté la concurrence évolutive pour le Si dissous (DSi). Cela a entraîné des changements dans les cycles biogéochimiques mondiaux du silicium, du carbone (C) et d’autres nutriments qui régulent la productivité des océans et, en fin de compte, le climat. Cependant, une série de découvertes très récentes en géologie et en biologie suggèrent que les premiers impacts biologiques sur le cycle global du Si ont probablement été causés par les procaryotes au cours de l’Archéen avec de nouvelles diminutions du DSi océanique avec l’évolution de la biosilicification du squelette à grande échelle et généralisée, bien avant le modèle actuel. Notre projet entremêle géologie et biologie et créera de nouvelles connaissances sur les interactions entre la biosilicification des organismes et l’environnement et sur la façon dont ces interactions ont évolué au cours de l’histoire de la Terre. Ensemble, ces analyses géologiques et biologiques fourniront de nouvelles perspectives sur les événements clés durant les périodes de réduction du DSi, qui réorganisent la distribution du carbone et des nutriments, modifiant le flux énergétique et la productivité dans les communautés biologiques des anciens océans.

Venez nombreux!

L’étude du continuum terre-mer

, ,

La zone côtière, à l’interface entre le système terre et le système mer, concentre un ensemble d’interfaces et de gradients environnementaux naturels, générant une très forte hétérogénéité à différentes échelles spatio-temporelles. Les questionnements scientifiques sont donc nombreux pour tenter de mieux comprendre la nature et la dynamique des flux et des forçages physiques, biologiques, géochimiques, et leurs interactions et rétroactions (prospective SIC-INSU). Extrêmement dynamique et complexe, cette zone côtière est également le siège de nombreuses facettes du changement global avec le changement climatique bien sûr, mais également des pressions anthropiques fortes et croissantes liées à l’urbanisme, à l’aménagement du territoire, à l’exploitation des ressources minérales et vivantes, à terre comme en mer. Dans ce contexte, nos objectifs sont triples :
● développer une approche intégrée des transferts de matière dissoute et particulaire de la terre à la mer, combinant observation, études de processus et modélisation dans les estuaires et en zone côtière, pour mieux comprendre la réponse de l’écosystème côtier aux forçages physiques, biogéochimiques et biologiques, terrestres et océaniques (Axe 1 de l’équipe 3) ;
● anticiper l’évolution possible de l’écosystème côtier en réponse au changement global, en développant des scénarios décrivant la réponse des organismes et de l’écosystème côtier à l’interaction de différentes facettes du changement global : changement climatique, changement de pratiques agricoles, évolution (naturelle ou non) des espèces invasives (Axe 1 de l’équipe 3, liens forts à développer avec l’AR5 de l’équipe 2), et
● développer une approche transdisciplinaire permettant la co-construction de ces scénarios et leur analyse avec les acteurs concernés, dans une optique d’aide à la décision en matière de gestion soutenable du socio-écosystème côtier (liens avec l’axe « Rade de Brest » et avec l’axe « indisciplinés », liens avec les autres composantes de l’IUEM).

Equipes

Lucie CASSARINO

,

Projets

RadiCal

,