Archive d’étiquettes pour : cycle biogéochimique

Radiolaires et cycle du silicium : les travaux de Natalia Llopis-Monferrer sous les projecteurs !

L’American Geophysical Union (AGU) a déclaré “Research Spotlight” le récent article de Natalia Llopis-Monferrer paru dans “Global Biogeochemical Cycles” sur l’importance des radiolaires (organismes planctoniques marins) dans le cycle du silicium de l’océan mondial.

Ces récents travaux réévaluent le rôle de ces minuscules protistes qui pourraient contribuer à près d’un cinquième de la production mondiale de silice par des organismes marins.

Natalia Llopis-Monferer, de nationalité espagnole, est étudiante au LEMAR (UMR 6539) de l’IUEM-UBO. Elle est co-encadrée par Aude Leynaert (CNRS), Fabrice Not (SBR) et Paul Tréguer (UBO).

Lire l’article d'”EOS” (Sciences News by AGU)

Les squelettes d’éponges, un puits important de silicium dans l’océan

Le silicium (Si) est un élément essentiel dans le fonctionnement biogéochimique et écologique de l’océan. On pense que le cycle marin actuel du Si est en équilibre, c’est-à-dire que les apports à l’océan égalisent les sorties. Les apports proviennent majoritairement des rivières, et les sorties étaient considérées comme résultant essentiellement de l’enfouissement des squelettes de diatomées dans le sédiment. Dans cet article, nous montrons que des organismes non phototrophes, tels que les éponges et les radiolaires, avec leur squelette de silice, participent également de façon significative à l’enfouissement de Si au fond de l’océan. L’examen microscopique et le dosage des sédiments prélevés sur 17 sites à travers le monde ont révélé que le squelette des éponges est exceptionnellement résistant à la dissolution, et était passé inaperçu dans les inventaires biogéochimiques des sédiments. La conservation des spicules d’éponges dans les sédiments est de 45,2 %, alors qu’il est seulement de 6,8 % pour les tests de radiolaires et de 8,0 % pour les frustules de diatomées. Au total, les éponges séquestreraient 1,71 Tmol de Si an-1. Les radiolaires auraient une contribution minime avec 0.09 Tmol de Si an−1.  Collectivement, ces deux organismes non phototrophes augmentent le puits de silice de 28% et contribue à rétablir l’équilibre du cycle de la silice dont les apports dépassaient les sorties.

References

Maldonado, M., López-Acosta, M., Sitjà, C., García-Puig, M., Galobart, C., Ercilla, G., & Leynaert, A. (2019). Sponge skeletons as an important sink of silicon in the global oceans. Nature Geoscience. https://doi.org/10.1038/s41561-019-0430-7

 

Accédez à la publication

 

Cette publication a fait l’objet d’un article dans Le Monde, retrouvez-le ici

Séminaire de Daniel Conley (Lund University, Sweden) le 29 avril prochain

Le 29 avril prochain à 10h en salle A215 (IUEM) nous accueillerons Daniel Conley de l’Université de Lund en Suède qui viendra nous présenter ses travaux portant sur le thème suivant:

Constraining variations in the global biogeochemical silica cycle through geologic time.

Résumé de sa présentation :

Il est largement reconnu que l’émergence et l’expansion de la biominéralisation du silicium dans les océans ont affecté la concurrence évolutive pour le Si dissous (DSi). Cela a entraîné des changements dans les cycles biogéochimiques mondiaux du silicium, du carbone (C) et d’autres nutriments qui régulent la productivité des océans et, en fin de compte, le climat. Cependant, une série de découvertes très récentes en géologie et en biologie suggèrent que les premiers impacts biologiques sur le cycle global du Si ont probablement été causés par les procaryotes au cours de l’Archéen avec de nouvelles diminutions du DSi océanique avec l’évolution de la biosilicification du squelette à grande échelle et généralisée, bien avant le modèle actuel. Notre projet entremêle géologie et biologie et créera de nouvelles connaissances sur les interactions entre la biosilicification des organismes et l’environnement et sur la façon dont ces interactions ont évolué au cours de l’histoire de la Terre. Ensemble, ces analyses géologiques et biologiques fourniront de nouvelles perspectives sur les événements clés durant les périodes de réduction du DSi, qui réorganisent la distribution du carbone et des nutriments, modifiant le flux énergétique et la productivité dans les communautés biologiques des anciens océans.

Venez nombreux!

Rôle des interactions trophiques complexes dans les cycles biogéochimiques

,

Dans l’océan, les interactions trophiques entre les individus restent principalement représentées selon un schéma prédateur-proie. Pourtant, les méta-analyses de co-occurrences taxonomiques, permises par les progrès en biologie moléculaire, suggèrent que de nombreux organismes planctoniques sont impliqués dans des interactions complexes allant de la prédation facultative à la symbiose en passant par le mutualisme. Si ces relations semblent la règle et non l’exception dans l’océan, les efforts de recherche se portent principalement sur quelques exemples emblématiques. Dans CHIBIDO, nous tâchons de mettre en évidence de nouvelles interactions et nous nous intéressons plus particulièrement aux organismes mixotrophes (à la fois phototrophes et phagotrophes), mode trophique de la majorité des dinoflagellés et aux diazotrophes qui vivent souvent en symbiose avec d’autres organismes. Pour mieux comprendre le rôle des interactions trophiques sur les cycles biogéochimiques (notamment de l’azote et du carbone), il est nécessaire de coupler des outils.

L’équipe est internationalement reconnue pour sa compétence en matière d’isotopes stables 13 C et 15 N pour quantifier les flux océaniques. Depuis quelques années, elle couple cette approche avec de nouveaux outils (par ex. nanoSIMS ou tri par cytométrie en flux) qui permettent de visualiser et de quantifier les flux entre le milieu et les organismes et/ou entre les organismes.

Archive d’étiquettes pour : cycle biogéochimique

Lucie CASSARINO

,

Archive d’étiquettes pour : cycle biogéochimique

RadiCal

,