Tag Archive for: biogeochemical cycle

Radiolarians and the silicon cycle: Natalia Llopis-Monferrer’s work in the spotlight!

The American Geophysical Union (AGU) has declared “Research Spotlight” the recent article by Natalia Llopis-Monferrer in “Global Biogeochemical Cycles” on the importance of radiolarians (marine planktonic organisms) in the silicon cycle of the world ocean.

This recent work re-evaluates the role of these tiny protists, which could contribute up to one-fifth of the world’s silica production by marine organisms.

Natalia Llopis-Monferer is a spanish student at LEMAR (UMR 6539). She is co-supervised by Aude Leynaert (CNRS), Fabrice Not (SBR) and Paul Tréguer (UBO).

Read the “EOS” article (Sciences News by AGU)

Sponge skeletons as an important sink of silicon in the global oceans

Silicon (Si) is a pivotal element in the biogeochemical and ecological functioning of the ocean. The marine Si cycle is thought to be in internal equilibrium, but the recent discovery of Si entries through groundwater and glacial melting have increased the known Si inputs relative to the outputs in the global oceans. Known outputs are due to the burying of diatom skeletons or their conversion into authigenic clay by reverse weathering. Here we show that non-phototrophic organisms, such as sponges and radiolarians, also facilitate significant Si burial through their siliceous skeletons. Microscopic examination and digestion of sediments revealed that most burial occurs through sponge skeletons, which, being unusually resistant to dissolution, had passed unnoticed in the biogeochemical inventories of sediments. The preservation of sponge spicules in sediments was 45.2 ± 27.4%, but only 6.8 ± 10.1% for radiolarian testa and 8% for diatom frustules. Sponges lead to a global burial flux of 1.71 ± 1.61 TmolSi yr−1 and only 0.09 ± 0.05 TmolSi yr−1 occurs through radiolarians. Collectively, these two non-phototrophically produced silicas increase the Si output of the ocean to 12.8 TmolSi yr−1, which accounts for a previously ignored sink that is necessary to adequately assess the global balance of the marine Si cycle.

References

Maldonado, M., López-Acosta, M., Sitjà, C., García-Puig, M., Galobart, C., Ercilla, G., & Leynaert, A. (2019). Sponge skeletons as an important sink of silicon in the global oceans. Nature Geoscience. https://doi.org/10.1038/s41561-019-0430-7

 

Read the publication

Daniel Conley’s seminar (Lund University, Sweden) on April 29

On April 29th at 10am in room A215 (IUEM) we will welcome Daniel Conley from Lund University in Sweden who will present his work on the following theme:

Constraining variations in the global biogeochemical silica cycle through geologic time.

Summary of his presentation:

It is widely recognized that the emergence and expansion of silica biomineralization in the oceans has affected evolutionary competition for dissolved Si (DSi). This resulted in changes in the global biogeochemical cycles of silica, carbon (C) and other nutrients that regulate ocean productivity and ultimately climate. However, a series of very recent discoveries in geology and biology suggest that the first biological impacts on the global Si cycle were likely by prokaryotes during the Archean with further decreases in oceanic DSi with the evolution of widespread, large-scale skeletal biosilicification significantly earlier than the current paradigm. Our project interweaves geology and biology and will create new knowledge into the interactions between biosilicification in organisms and the environment and how these interactions have evolved through Earth’s history. Together, these geological and biological analyses will provide novel insights into the key events during periods of DSi drawdown, which reorganize the distribution of carbon and nutrients, changing energy flow and productivity in the biological communities of the ancient oceans.

Links between biogeochemical cycles of metals and living organisms

,

Improving our knowledge of the metal cycle in contrasting environments of the world ocean is absolutely necessary for a better understanding of the oceanic biogeochemical cycles of major elements (C, Si, N, S) and the biological carbon pump. LEMAR is internationally recognised in this field, in particular through our strong involvement in the GEOTRACES programme. We combine observations, field or laboratory experiments and modelling. Our originality lies in the combined study of the dissolved and particulate phases, as well as their speciation (redox and organic), in order to better understand the interactions between these two reservoirs, which are fundamental in the metal cycle and yet are still little studied. Our expertise also includes the study of interactions between the metal cycle and plankton, by linking metal speciation to the bioavailability of micronutrients for marine plankton (phytoplankton and bacteria). The integration of omics tools (functional genomics, transcriptomics, etc.) into this theme is currently essential to further investigate the link between biogeochemical cycles of metals and interactions with living organisms. These explorations will continue to be carried out, both during oceanographic missions and in laboratory studies, notably thanks to our numerous international collaborations and our involvement in the future international programme BioGeoSCAPES (‘Ocean metabolism and nutrient cycles on a changing planet’). The strong international momentum of the GEOTRACES programme and the forthcoming BioGeoSCAPES programme now allows us to build and meet the challenge of integrated microbial biogeochemistry projects that require international coordination with a multidisciplinary approach.

The Silicon Cycle: The Forgotten Silicified

,

Le cycle du silicium est une thématique historique du LEMAR qui possède une forte visibilité internationale grâce à notre implication dans les programmes et consortium internationaux comme BioGeoSCAPES, IMBER, IODP, GEOTRACES, OPALEO, PAGES et SILICAMICS. Nous avons développé une approche transdisciplinaire, incluant la chimie, la biogéochimie, la paléo-océanographie, la biochimie, la physiologie, la biologie et, nouvellement, la génomique. Nous utilisons par ailleurs différents outils expérimentaux et de modélisation et des approches multi-échelles, depuis des expériences au laboratoire qui permettent de mieux comprendre les processus influençant le cycle du Si jusqu’à de grandes campagnes internationales d’observation du milieu naturel. Le «Si-group» a initié en 2015 le cycle de conférences internationales SILICAMICS autour du rôle des organismes silicifiants dans le fonctionnement des écosystèmes marins et dans les cycles biogéochimiques océaniques. SILICAMICS s’est poursuivie au Canada en 2018, et une 3 ème édition est en préparation en Chine (2021). Suite à ces conférences, l’article de Nature Geoscience (Tréguer et al., 2018) combine les compétences d’experts en physique, biogéochimie, génomique et modélisation pour faire le point sur l’efficacité d’export des diatomées ; l’issue spéciale de Frontiers in Marine Science (Moriceau et al. 2019) rassemble 12 articles couvrant les thèmes de SILICAMICS et deux ANRs (BIOPSIS et RADICAL) ont vu le jour, mettant en évidence la nécessité de réévaluer le rôle des silicifiés oubliés dans le cycle du Si (voir AR2.2 CHIBIDO). Ces épisodes ont de plus été moteurs dans la création d’un consortium puis d’une école internationale et cours en ligne (Silica School) réunissant 31 instituts de recherche de 12 pays. De nombreux chercheurs invités régulièrement au LEMAR garantissent le dynamisme et la visibilité de cette thématique du LEMAR au niveau international.

 

Pour en savoir plus :

Le cycle du silicium dans l’océan moderne : https://www-iuem.univ-brest.fr/cycle-du-silicium-dans-locean/

Research topic dans Frontiers in Marine Sciences: Biogeochemistry and Genomics of Silicification and Silicifiers

Tag Archive for: biogeochemical cycle

Lucie CASSARINO

,

Tag Archive for: biogeochemical cycle

RadiCal

,