Archive d’étiquettes pour : tectonique

Anne Briais, Chercheuse CNRS en géodynamique à Geo-Ocean

, ,

Que faisais-tu avant de venir à l’IUEM ?

J’ai obtenu un doctorat à Sorbonne Université (anciennement Paris VI – UPMC) tout en effectuant mes recherches au laboratoire de tectonique de l’Institut de physique du globe de Paris (IPG) où j’ai travaillé sur l’ouverture de la mer de Chine du sud. C’était un sujet de géosciences marines au sein d’un laboratoire qui étudiait la tectonique en Asie. C’est à cette occasion-là que j’ai fait mes 1ères campagnes en mer après avoir fait le choix du domaine marin et non du terrain. Je suis allée en Postdoc à l’Université de Rhode Island aux États-Unis puis j’ai fait un 2ème post doc au National Oceanographic Centre (NOC) à Southampton, anciennement Institute of oceanographic sciences à Wormley. Lors de ces postdocs, j’ai travaillé sur les dorsales océaniques actives. Puis, j’ai été recrutée au CNRS en 1992 en tant que chargée de recherche au Laboratoire d’études en géophysique et océanographie spatiales (LEGOS). C’était le début de l’océanographie par satellite. Cette nouvelle technique a permis de faire des cartes globales du champ de gravité. Indirectement, nous pouvions étudier la dynamique des dorsales océaniques sur 200 millions d’années. Ensuite, j’ai continué à travailler avec les données satellites et les données de campagnes en mer au Laboratoire de dynamique terrestre et planétaire toujours à l’Observatoire Midi-Pyrénées (OMP) puis au Géosciences Environnement Toulouse (GET).

Pourquoi as-tu choisi l’IUEM ?

J’ai décidé de rejoindre Brest car je travaillais plus avec des collègues du laboratoire Geo-Ocean (anciennement LGO) qu’avec des collègues toulousains. Mes thématiques de recherche sont le cœur de métier de Geo-Ocean.

Que fais-tu à l’IUEM ?

Mes recherches sont centrées sur la dynamique des dorsales océaniques et des rifts et l’interaction avec la circulation du manteau. De manière générale, j’apporte des connaissances sur le fonctionnement de la planète et la tectonique des plaques. Dans un cadre plus terre à terre, les résultats de mes recherches aident à comprendre l’hydrothermalisme et donc localiser les ressources minières potentielles, ainsi que les limites tectoniques sources de séismes.

Au sein de l’International Ocean Discovery Program (IODP), je suis retournée en mer de Chine en 2014 et 2017 pour des campagnes de forage qui ont confirmé mes résultats de thèse : nous avons pu dater les fonds marins en mer de Chine et apporter des contraintes sur les âges du rifting et de l’ouverture océanique.

À l’heure actuelle, je suis co-cheffe de l’expédition IODP395 au sud de l’Islande prévue en 2020 qui a été reportée en 2023. Nous allons mieux comprendre l’interaction entre le point chaud de l’Islande et la dorsale médio-atlantique nord. C’est une campagne océanographique sur le JOIDES Resolution, navire de forages scientifiques.

Un autre grand projet en cours est l’étude de la dorsale sud est indienne au sud de la Tasmanie. J’ai été cheffe de mission de la campagne STORM (South Tasmania Ocean Ridge and Mantle) en 2015. Pendant cette campagne, nous avons levé des cartes bathymétriques dans des zones jusqu’ici inconnues, en particulier à cause de la météo.

Je participe également à d’autres recherches de collègues brestois, par exemple avec Marcia Maia dans l’atlantique équatorial.

Je fais aussi de l’enseignement sur les dorsales et la géodynamique en licence et en M1 du Master Géosciences Océan.

As-tu des anecdotes professionnelles à nous raconter ?

J’ai soutenu ma thèse le jour de la chute du mur de Berlin.

À la fin de ma 1ère campagne en mer, le N/O Jean Charcot devait débarquer à Jakarta et pour des raisons politiques, il n’a jamais été autorisé à accoster. Nous n’avons pu prendre l’avion qu’une semaine après depuis Singapour.

Pendant la campagne STORM, le mauvais temps était tel que le frigo de la cafet a basculé et a été retrouvé sur le ventre malgré l’amarrage et les attaches. C’était la 1ère fois que ça arrivait sur l’Atalante !

Quel est ton plus beau souvenir de boulot ?

Beaucoup de bons moments sur les campagnes en mer, par exemple un rayon vert lors d’une campagne dans l’océan indien, des albatros dans le grand sud, ou un poulpe à oreilles suivi à plus de 4000 mètres de fond depuis le Nautile.

Le tour complet de l’île de Pâques au petit matin à la fin de la campagne Pacantarctic 2.

Quels sont tes centres d’intérêt ?

Les voyages et la danse.

As-tu une devise ?

Il faut savoir ce que l’on veut dans la vie.

Crédit photos

Georges Ceuleneer / Campagne STORM

IODP

Contact

Anne Briais / CNRS

 

Repère : les climats de la Terre

Depuis le début de son histoire il y a 4,6 milliards d’années la Terre a connu des bouleversements importants et des climats très divers. Les premiers milliards d’années, l’intensité du soleil était bien plus faible qu’aujourd’hui. Mais le climat était pourtant très chaud. Ceci est dû à la concentration en gaz à effet de serre dans l’atmosphère qui était beaucoup plus élevée. Elle pouvait atteindre 40 000 parties par millions (ppm) soit cent fois plus qu’aujourd’hui. Sur la Terre primitive, la température de l’océan pouvait même monter jusqu’à 60°C.

A l’échelle des dizaines de millions d’années, la tectonique modifie l’apparence de la Terre : de la création de supercontinents à leur dislocation, de la formation d’océans et de mers à leur disparition, en passant par l’élévation de chaines de montagnes. Toutes ces transformations ont un impact sur le climat et sur le cycle du carbone. A deux reprises, il y a 720 et 635 millions d’années, la Terre s’est même presque complètement englacée. C’est ce que l’on appelle la Terre «boule de neige».

Au quaternaire, de 2,5 millions d’années à aujourd’hui, la position des continents est globalement telle qu’on la connaît aujourd’hui et le climat est marqué par la succession de périodes glaciaires et interglaciaires. A cette époque, la Terre a compté jusqu’à quatre calottes de glaces, alors qu’aujourd’hui il n’y en a que deux : le Groenland et l’Antarctique. C’est également à cette époque qu’apparaît le genre Homo. Les forages réalisés en Antarctique mettent en évidence des bulles piégées dans la glace durant les 800.000 dernières années. Celles-ci fournissent des informations sur les quantités de CO2 présents dans l’atmosphère.

De nos jours, les activités humaines modifient les quantités de CO2 présentes dans l’atmosphère et dans l’océan. En dégageant des gaz à effet de serre, l’homme influence le climat et les cycles naturels de la planète à une vitesse sans précédent. Les scientifiques étudient ces processus naturels ainsi que l’impact de l’homme sur son environnement.

Voyage dans le passé grâce aux bassins sédimentaires

La crise de salinité messinienne (datant du Messinien, période allant de -7 à -5 millions d’années) est un des évènements sur lequel se penchent les scientifiques. Celle-ci a eu lieu il y a 6 millions d’années et a conduit à l’asséchement presque complet de la Méditerranée, avec un impact important sur le climat et la végétation de la région.

Pour étudier cet événement, les chercheurs travaillent à partir d’images sismiques obtenues par l’émission d’ondes dans le sol. En Méditerranée, ils ont retrouvé des dépôts de sel dans les sédiments et ont alors cherché à expliquer leur provenance. Il se trouve qu’à cette époque, la tectonique des plaques modèle le visage de la Terre. Elle provoque notamment la fermeture d’un passage au nord du Maroc correspondant à l’actuel détroit de Gibraltar. Les échanges d’eau entre l’Atlantique et la Méditerranée se réduisent. Cette dernière s’évapore alors petit à petit, jusqu’à se transformer en vastes bassins d’eau très salée. Ce sont ces dépôts de sel que les scientifiques ont retrouvé dans les sédiments marins.

Mais comment la Méditerranée est-elle redevenue telle qu’on la connaît ? En continuant d’étudier les dépôts sédimentaires, les scientifiques ont pu montrer qu’une gigantesque inondation a permis à la Méditerranée de se remplir à nouveau. Vers 5,3 millions d’années, la formation du détroit de Gibraltar a permis l’invasion des eaux atlantiques, entraînant la formation d’une cascade d’un kilomètre de haut au niveau de la Sicile. On estime que l’ouest de la Méditerranée s’est rempli en seulement deux ans !

Contact : Marina Rabineau et Marc André Gutscher du Laboratoire géosciences océan (LGO): marina.rabineau@univ-brest.fr