Des isoscapes du δ15N sur des bivalves fournissent une base de référence pour l’empreinte de l’azote urbain au bord d’un récif corallien classé au patrimoine mondial

,

Résumé

L’eutrophisation est une menace majeure pour les récifs coralliens du monde entier. Dans cette étude, nous avons cartographié l’empreinte de l’azote anthropique autour de Nouméa, une ville côtière entourée de 15 743 km2 de récifs classés par l’UNESCO. Nous avons mesuré la signature en δ15N de 348 bivalves benthiques à longue durée de vie provenant de 12 espèces sur 27 sites et nous les avons interpolés pour générer des isoscapes du δ15N. Nous avons évalué l’influence des temps de séjour de l’eau sur l’enrichissement en azote et prédi un risque d’eutrophisation dans la zone. Les isoscapes d’azote ont mis en évidence un fort gradient spatial (4,3 à 11.7‰) entre la lagune extérieure et trois baies très exposées de Nouméa. Plusieurs récifs protégés bénéficieraient d’une meilleure gestion des rejets d’eaux usées, tandis qu’une baie de la zone centrale classée par l’UNESCO pourrait souffrir d’un risque élevé d’eutrophisation à l’avenir. Notre étude renforce l’utilité de l’utilisation des animaux benthiques pour caractériser l’empreinte azotée anthropique et fournir une base de référence nécessaire aux écologistes et aux décideurs politiques.

 

Fig. 3. Isoscapes du δ15N en 2012, estimé dans 27 stations dans le lagon sud-ouest de la Nouvelle-Calédonie à partir d’échantillons de muscles de 12 espèces de bivalves.

 

Points forts

– Les communautés de bivalves se nourrissant de filtres benthiques sont de bons bio-moniteurs des variations spatiales de l’eutrophisation d’origine anthropique.

– La valeur de référence δ15N trouvée chez les bivalves du lagon extérieur de la Nouvelle-Calédonie était de 4,7 ± 0,4‰.

– La signature δ15N des bivalves benthiques a atteint 11,7‰ dans la station la plus exposée.

– Les isoscapes peuvent être utilisés à la fois pour la surveillance à long terme et pour prévoir les risques de pollution anthropique en mer.

 

Reference

Thibault M., Duprey N., Gillikin D.P., Thébault J., Douillet P., Chauvaud L., Amice E., Munaron J.M., Lorrain A. 2020. Bivalve δ15N isoscapes provide a baseline for urban nitrogen footprint at the edge of a World Heritage coral reef. Marine Pollution Bulletin vol. 152. https://doi.org/10.1016/j.marpolbul.2019.110870

Nouvelles recommandations pour l’application des modèles de Stokes à la vitesse de sédimentation des agrégats marins

, ,

Les simulations numériques des cycles biogéochimiques des océans doivent représenter adéquatement les vitesses de sédimentation des particules (VS). Depuis des décennies, la loi de Stokes, qui permet d’estimer la vitesse de chute des particules à partir de leur densité et de leur taille, est largement utilisée. Mais si la loi de Stokes s’applique aux petites sphères lisses et rigides qui se déposent avec un faible nombre de Reynolds, elle n’est pas applicable aux agrégats marins dont la forme, la structure et la composition sont complexes. Les minéraux et le zooplancton peuvent modifier les agrégats phytoplanctoniques de manière à changer leur VS, ce qui pourrait améliorer l’applicabilité des modèles de Stokes. À l’aide de cylindres de roulement, nous avons produit expérimentalement des agrégats de diatomées en présence et en absence de minéraux et/ou de microzooplancton. Les minéraux et, dans une moindre mesure, le microzooplancton ont réduit la taille et la rugosité des agrégats et ont augmenté leur sphéricité et leur compacité. La loi de Stokes paramétrée avec une porosité fractale a modélisé de façon adéquate les relations taille-VS pour les agrégats chargés en minéraux. Les agrégats contenant uniquement du phytoplancton et ceux exposés au microzooplancton ont suivi l’équation de frottement généralisé de Navier-Stokes suggérant un effet indiscernable du microzooplancton et un coefficient de frottement trop complexe pour être calculé avec une hypothèse de Stokes. Nous avons comparé nos résultats avec un ensemble de données plus important de granulats marins lestés et non lestés. Cela a confirmé que les relations taille-VS pour les agrégats lestés peuvent être simulées par les modèles de Stokes avec une paramétrisation adéquate de la porosité fractale. Étant donné l’importance du lestage minéral dans l’océan, nos résultats pourraient faciliter la paramétrisation des modèles biogéochimiques pour un bassin de particules important dans l’océan et particulièrement dans la zone mésopélagique où le rapport matière organique particulaire/minéral diminue. Nos résultats renforcent également l’importance de la prise en compte de la porosité comme un prédicteur décisif de la VS des agrégats marins.

Vitesses de sédimentation en fonction de l’ESD (diamètre sphérique équivalent) pour les agrégats formés dans chaque cuve des quatre traitements et comparaison avec les attentes théoriques issues de différentes paramétrisations de la loi de Stokes et de l’équation de frottement généralisé de Navier-Stokes. P : phytoplancton ; PZ : phytoplancton + microzooplancton (rotifères) ; PM : phytoplancton + minéral (calcite) ; PMZ : phytoplancton + minéral + microzooplancton. a) Modèle 1, loi de Stokes avec des porosités constantes de 0 % (lignes pointillées) et de 99 % (lignes pleines). (b) Modèle 2, loi générale de Navier-Stokes avec des frottements constants de 1 (lignes pointillées) et 5 (lignes pleines), et une porosité constante de 99 %. (c) Modèle 3, loi de Stokes avec une porosité mise à l’échelle sur une géométrie fractale avec un coefficient a = 0,03 et D3 = 1,4 (lignes pointillées) et D3 = 1,8 (lignes pleines). (d) Modèle 4, loi générale de Navier-Stokes sur la friction avec une porosité mise à l’échelle sur une géométrie fractale avec un coefficient a = 0,03 et D3 = 1,4 (lignes pleines) et 1,8 (lignes pointillées). Voir le texte pour plus de détails sur le calcul de la friction.

Référence

Laurenceau-Cornec, E.C., Le Moigne, F.A.C., Gallinari, M., Moriceau, B., Toullec, J., Iversen, M.H., Engel, A., and De La Rocha, C.L. 2020. New guidelines for the application of Stokes’ models to the sinking velocity of marine aggregates. Limnol. Oceanogr. doi:10.1002/lno.11388.
Lien vers la revue :

Les squelettes d’éponges, un puits important de silicium dans l’océan

Le silicium (Si) est un élément essentiel dans le fonctionnement biogéochimique et écologique de l’océan. On pense que le cycle marin actuel du Si est en équilibre, c’est-à-dire que les apports à l’océan égalisent les sorties. Les apports proviennent majoritairement des rivières, et les sorties étaient considérées comme résultant essentiellement de l’enfouissement des squelettes de diatomées dans le sédiment. Dans cet article, nous montrons que des organismes non phototrophes, tels que les éponges et les radiolaires, avec leur squelette de silice, participent également de façon significative à l’enfouissement de Si au fond de l’océan. L’examen microscopique et le dosage des sédiments prélevés sur 17 sites à travers le monde ont révélé que le squelette des éponges est exceptionnellement résistant à la dissolution, et était passé inaperçu dans les inventaires biogéochimiques des sédiments. La conservation des spicules d’éponges dans les sédiments est de 45,2 %, alors qu’il est seulement de 6,8 % pour les tests de radiolaires et de 8,0 % pour les frustules de diatomées. Au total, les éponges séquestreraient 1,71 Tmol de Si an-1. Les radiolaires auraient une contribution minime avec 0.09 Tmol de Si an−1.  Collectivement, ces deux organismes non phototrophes augmentent le puits de silice de 28% et contribue à rétablir l’équilibre du cycle de la silice dont les apports dépassaient les sorties.

References

Maldonado, M., López-Acosta, M., Sitjà, C., García-Puig, M., Galobart, C., Ercilla, G., & Leynaert, A. (2019). Sponge skeletons as an important sink of silicon in the global oceans. Nature Geoscience. https://doi.org/10.1038/s41561-019-0430-7

 

Accédez à la publication

 

Cette publication a fait l’objet d’un article dans Le Monde, retrouvez-le ici

Enregistrement par les Coquilles Saint-Jacques de la pollution des eaux côtières par des composés spécifiques de gadolinium

Les agents de contraste à base de gadolinium (ACBG), couramment utilisés en imagerie par résonance magnétique (IRM), se retrouvent directement dans les eaux marines côtières où les concentrations de gadolinium sont en augmentation. Comme de nombreuses espèces aquatiques pourraient être sensibles à cette nouvelle pollution, nous avons évalué la possibilité d’utiliser des mollusques pour en évaluer l’importance. Les excès de gadolinium enregistrés par les coquilles Saint-Jacques et pétoncles collectées dans la baie de Brest (Bretagne, France) depuis plus de 30 ans ne reflètent pas la consommation globale des ACBG, mais sont largement contrôlés par l’un d’eux, le gadopentetate diméglumine. Bien que son utilisation ait été fortement réduite en Europe au cours des dix dernières années, les excès de gadolinium sont encore mesurés dans les coquilles. Ainsi, une partie du gadolinium dérivé d’autres ACBG est biodisponible et pourrait avoir un impact sur la faune marine.

Fig : Anomalies en gadolinium (a : Gd/Gd*), excès de gadolinium (b : ΔGd) enregistrés par les coquilles Saint-Jacques échantillonnées de 1960 à 2018 dans la baie de Brest, et consommation de GBCA en France enregistrée dans la base Medic’AM22 maintenue par la CPAM (c : consommation totale et GBCA macrocycliques, d : GBCAs linéaires).

Ces excès dans les coquilles Saint-Jacques (ΔGd = 0-2,3 ng/g) présentent une évolution temporelle complexe (Fig. 3b). Le plus ancien échantillon prélevé en 1960, avant l’utilisation des ACBG, ne montre pas d’excès significatif en gadolinium. On observe une augmentation marquée des excès de gadolinium de 1989 à 2005, suivie d’une forte baisse jusqu’en 2010, date à laquelle les niveaux normaux sont de nouveau observés. Par la suite, les excès semblent augmenter à nouveau sans atteindre le maximum de 2005, mais les données montrent une certaine dispersion. Une telle évolution est inattendue car l’utilisation des ABCG n’a cessé de croître depuis leur introduction sur le marché. Elle pourrait dépendre de la biodisponibilité du gadolinium anthropique déterminée par sa spéciation dans l’eau de mer.

Référence

Le Goff, S., Barrat, J.-A., Chauvaud, L., Paulet, Y.-M., Gueguen, B., & Salem, D. B. (2019). Compound-specific recording of gadolinium pollution in coastal waters by great scallops. Scientific Reports, 9(1), 8015. https://doi.org/10.1038/s41598-019-44539-y

 

Accédez à la publication

In Silico Analysis of Pacific Oyster (Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement

,
Valentin FOULON, Pierre BOUDRY, Sébastien ARTIGAUD, Fabienne GUÉRARD et Claire HELLIO

Après leur phase planctonique, les larves d’organismes marins benthiques doivent trouver un habitat approprié pour s’établir et se métamorphoser. Pour les huîtres, l’adhésion larvaire se produit au stade pédivéligère avec la sécrétion d’un bioadhésif protéique produit par le pied, un organe spécialisé et éphémère. Le bioadhésif ostréicole est très résistant à l’extraction protéomique et n’est produit qu’en très faible quantité, ce qui explique pourquoi il a été très peu examiné chez les larves à ce jour. L’analyse in silico des bases de données sur les acides nucléiques pourrait aider à identifier les gènes d’intérêt impliqués dans la colonisation. Dans ce travail, le transcriptome accessible au public de l’huître du Pacifique Crassostrea gigas au cours de ses stades de développement a été extrait pour sélectionner des gènes hautement exprimés au stade pédivéligère. Notre analyse a révélé 59 séquences potentiellement impliquées dans l’adhésion des larves de C. gigas. Certaines protéines apparentées contiennent des domaines conservés déjà décrits dans d’autres bioadhésifs. Nous proposons une composition hypothétique de bioadhésif de C. gigas dans laquelle le constituant protéique est probablement composé de collagène et le domaine du facteur von Willebrand pourrait jouer un rôle dans la cohésion adhésive. Des gènes codant pour des enzymes impliquées dans la chimie du DOPA ont également été détectés, indiquant que cette modification est également potentiellement présente dans l’adhésif des larves pédivéligères.

Représentation schématique des interactions moléculaires hypothétiques impliquées dans l’adhésion des larves pédivéligères de C. gigas, basée sur la sélection des gènes spécifiquement exprimés au stade pédivéligère.

 

RÉFÉRENCE :

Foulon, V., Boudry, P., Artigaud, S., Guerard, F., and Hellio, C. 2019. In Silico Analysis of Pacific Oyster (Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement. Int. J. Mol. Sci. 20(1): 197. doi:10.3390/ijms20010197.

 

Cliquez ici pour le site de la revue (article en accès libre).