La pompe biologique de carbone, régulatrice du climat

L’océan joue un rôle fondamental de régulateur du climat. Mais, s’il contribue à ralentir le changement climatique, les émissions de CO2 viennent également perturber des processus naturels avec des impacts plus ou moins certains sur les écosystèmes marins.

Le phytoplancton, acteur de la pompe biologique de carbone

A la surface de l’océan, vivent des algues microscopiques qui dérivent, connues sous le nom de phytoplancton. Elles ont accès à la lumière du soleil et utilisent son énergie pour faire de la photosynthèse. Elles transforment ainsi le CO2 et produisent plus de la moitié de l’oxygène que nous respirons. Le carbone fixé par ces organismes permet de nourrir les animaux marins. Les particules (pelotes fécales, cellules mortes, détritus) migrent ensuite vers le fond. Une petite partie atteint les profondeurs et est alors stockée dans les sédiments pour des millénaires. On appelle ce phénomène la pompe biologique de carbone. Il limite la quantité de CO2 présent dans l’atmosphère et participe à la régulation du climat.

Le projet BioPSis

BioPSis est un projet du LEMAR qui s’intéresse à deux types de phytoplancton acteurs de la pompe biologique de carbone : les diatomées et les cyanobactéries. Les diatomées sont des algues microscopiques avec une carapace à base de silice (composant du verre) qui sont à l’origine d’un quart de l’oxygène que nous respirons. Elles produisent également une très grande quantité de matière organique, à la base de la chaîne alimentaire marine. Les cyanobactéries sont des bactéries photosynthétiques qui sont apparues il y a 3,5 milliards d’années. On les retrouve généralement dans les eaux chaudes. Elles peuvent également cumuler de la silice et forment ainsi des agrégats de matière organique qui transportent le carbone vers les profondeurs de l’océan.

Le but de BioPSis est d’étudier l’efficacité de ces deux types d’algues dans la pompe biologique de carbone dans le contexte du changement climatique et dans deux milieux différents : l’océan Arctique pour les diatomées et la mer des Sargasses pour les cyanobactéries. Le changement climatique modifie les courants marins, ce qui diminue la quantité de nutriments présents à la surface des océans. L’enjeu est de savoir quel est l’impact de cette limitation en nutriments sur le comportement des diatomées et des cyanobactéries et si celui-ci limite le transport de carbone vers les profondeurs.

Le projet Greenedge

Greenedge est un projet international multidisciplinaire auquel participe le LEMAR. Son objet d’étude: le phénomène de bloom printanier en Arctique. Dans cette région, le phytoplancton est essentiellement composé de diatomées et de dinoflagellés. Au printemps, la fonte des glaces permet à la lumière de s’infiltrer et aux nutriments de remonter à la surface favorisant ainsi le développement des micro-algues. L’explosion massive du nombre de cellules phytoplanctoniques est appelée le bloom, qui est à la base de toute la chaîne alimentaire.

Avec le changement climatique et la diminution de l’étendue de la banquise, il arrive que le bloom ait lieu plus tôt dans l’année. Il peut également y avoir un autre bloom à l’automne. Les chercheurs tentent de mieux comprendre les grands cycles biogéochimiques et l’impact sur le réseau trophique en Arctique, c’est-à-dire sur l’ensemble des chaînes alimentaires reliées entre elles dans cet écosystème.

Le projet BioPSis, financé par l’Agence nationale de la recherche (ANR) pour une durée de 4 ans, a commencé le 1er février 2017. Il est coordonné par Brivaëla Moriceau du LEMAR.

Le projet Greenedge est financé par l’ANR 2014 – 2019. Il est porté par l’Unité Mixte Internationale Takuvik, issue d’un partenariat entre l’Université de Laval (Canada) et le CNRS. Le LEMAR est partenaire du projet. Site pédagogique pour découvrir l’océan Arctique et le projet Greenedge : http://www.aoa.education/fr

Contact: brivaela.moriceau@univ-brest.fr

 

Repère: la stratification de l’océan

Repère: l’eutrophisation

L’eutrophisation est due à un excès de substances nutritives (nitrate et phosphate). Ce processus peut être naturel ou être le résultat des activités humaines (ruissellement des engrais, rejets d’eaux usées). Il provoque une multiplication excessive de certaines algues dans le milieu aquatique entrainant parfois des phénomènes de « marées vertes ». La décomposition des algues conduit à une diminution de la teneur en oxygène pouvant provoquer la mort des organismes tels que les poissons, les coquillages et les mollusques.

Quand l’activité de l’homme vient masquer la variabilité naturelle

Les carottages réalisés dans les sédiments marins permettent d’analyser les microfossiles qui s’y trouvent et d’obtenir une mine d’information sur les climats passés. Cette technique permet également d’étudier des événements plus récents. C’est ce qui a été fait par des chercheurs du Laboratoire géosciences océan (LGO) et du Laboratoire des sciences de l’environnement marin (LEMAR) qui se sont penchés sur les changements environnementaux de ces 150 dernières années en rade de Brest. L’enjeu : déterminer qui de l’homme ou du climat a le plus influencé ces changements.

Parmi les microfossiles passés à la loupe par les scientifiques, on peut citer les foraminifères, forme de zooplancton avec une coquille calcaire ou encore les dinoflagellés, algue unicellulaire qui produit un kyste calcaire. Ces dernières permettent de donner des informations sur les conditions à la surface des mers, comme la salinité et la température. Les dinoflagellés peuvent aussi être étudiés en parallèle avec les pollens, ce qui permet d’obtenir des informations sur les conditions marine et terrestre et de retracer l’histoire des bassins versants, c’est-à-dire d’un territoire comprenant un cours d’eau et ses affluents, sur les dernières centaines, voire même les derniers milliers d’années.

Les analyses effectuées à partir des carottages réalisés en rade de Brest ont mis en évidence l’influence des activités humaines à partir de 1945. Les pollens qui s’y trouvent permettent de retracer les changements dans l’agriculture (regroupement des surfaces cultivées et réduction des haies) qui ont favorisé le ruissellement. Les kystes des dinoflagellés, quant à eux, donnent des indications sur la présence d’algues toxiques liée aux fertilisants utilisés. Après 1985, les résultats montrent une forte eutrophisation des eaux de surface. Celle-ci est provoquée par le fort ruissellement des eaux fluviales contenant des fertilisants combinée à des températures de l’air anormalement élevées.

Publication du laboratoire géosciences ocean (LGO): Human-induced river runoff overlapping natural climate variability over the last 150 years: Palynological evidence (Bay of Brest, NW France), Clément Lambert, Aurélie Penaud, (2018) Global and Planetary Change
Contact: aurelie.penaud@univ-brest.fr

Repère: l’eutrophisation

Repère : les climats de la Terre

Depuis le début de son histoire il y a 4,6 milliards d’années la Terre a connu des bouleversements importants et des climats très divers. Les premiers milliards d’années, l’intensité du soleil était bien plus faible qu’aujourd’hui. Mais le climat était pourtant très chaud. Ceci est dû à la concentration en gaz à effet de serre dans l’atmosphère qui était beaucoup plus élevée. Elle pouvait atteindre 40 000 parties par millions (ppm) soit cent fois plus qu’aujourd’hui. Sur la Terre primitive, la température de l’océan pouvait même monter jusqu’à 60°C.

A l’échelle des dizaines de millions d’années, la tectonique modifie l’apparence de la Terre : de la création de supercontinents à leur dislocation, de la formation d’océans et de mers à leur disparition, en passant par l’élévation de chaines de montagnes. Toutes ces transformations ont un impact sur le climat et sur le cycle du carbone. A deux reprises, il y a 720 et 635 millions d’années, la Terre s’est même presque complètement englacée. C’est ce que l’on appelle la Terre «boule de neige».

Au quaternaire, de 2,5 millions d’années à aujourd’hui, la position des continents est globalement telle qu’on la connaît aujourd’hui et le climat est marqué par la succession de périodes glaciaires et interglaciaires. A cette époque, la Terre a compté jusqu’à quatre calottes de glaces, alors qu’aujourd’hui il n’y en a que deux : le Groenland et l’Antarctique. C’est également à cette époque qu’apparaît le genre Homo. Les forages réalisés en Antarctique mettent en évidence des bulles piégées dans la glace durant les 800.000 dernières années. Celles-ci fournissent des informations sur les quantités de CO2 présents dans l’atmosphère.

De nos jours, les activités humaines modifient les quantités de CO2 présentes dans l’atmosphère et dans l’océan. En dégageant des gaz à effet de serre, l’homme influence le climat et les cycles naturels de la planète à une vitesse sans précédent. Les scientifiques étudient ces processus naturels ainsi que l’impact de l’homme sur son environnement.

Voyage dans le passé grâce aux bassins sédimentaires

La crise de salinité messinienne (datant du Messinien, période allant de -7 à -5 millions d’années) est un des évènements sur lequel se penchent les scientifiques. Celle-ci a eu lieu il y a 6 millions d’années et a conduit à l’asséchement presque complet de la Méditerranée, avec un impact important sur le climat et la végétation de la région.

Pour étudier cet événement, les chercheurs travaillent à partir d’images sismiques obtenues par l’émission d’ondes dans le sol. En Méditerranée, ils ont retrouvé des dépôts de sel dans les sédiments et ont alors cherché à expliquer leur provenance. Il se trouve qu’à cette époque, la tectonique des plaques modèle le visage de la Terre. Elle provoque notamment la fermeture d’un passage au nord du Maroc correspondant à l’actuel détroit de Gibraltar. Les échanges d’eau entre l’Atlantique et la Méditerranée se réduisent. Cette dernière s’évapore alors petit à petit, jusqu’à se transformer en vastes bassins d’eau très salée. Ce sont ces dépôts de sel que les scientifiques ont retrouvé dans les sédiments marins.

Mais comment la Méditerranée est-elle redevenue telle qu’on la connaît ? En continuant d’étudier les dépôts sédimentaires, les scientifiques ont pu montrer qu’une gigantesque inondation a permis à la Méditerranée de se remplir à nouveau. Vers 5,3 millions d’années, la formation du détroit de Gibraltar a permis l’invasion des eaux atlantiques, entraînant la formation d’une cascade d’un kilomètre de haut au niveau de la Sicile. On estime que l’ouest de la Méditerranée s’est rempli en seulement deux ans !

Contact : Marina Rabineau et Marc André Gutscher du Laboratoire géosciences océan (LGO): marina.rabineau@univ-brest.fr

Plongée dans le passé lointain de la Terre

Il y a 3 milliards d’années, à la période étudiée par le projet Earthbloom, on retrouve déjà les premières traces de vie puisque celles-ci sont apparues il y a 3,5 milliards d’années. Il s’agissait alors uniquement de bactéries et d’algues composées d’une seule cellule et il faudra attendre 500 millions d’années et ce qui est appelé l’explosion cambrienne pour que la vie multicellulaire se développe.

Ces tout premiers organismes unicellulaires effectuaient une forme de photosynthèse qui ne produisait pas d’oxygène. Or les scientifiques cherchent à savoir quand la photosynthèse produisant de l’oxygène est apparue. Puisque c’est l’apparition de l’oxygène et son accumulation dans l’atmosphère qui a ensuite permis le développement de la vie sur Terre.

Earthbloom cherche donc à déterminer si la photosynthèse produisant de l’oxygène existait déjà il y a 3 milliards d’années. Le site étudié dans le cadre du projet est la formation rocheuse de Red Stone dans le nord du Canada qui date de cette lointaine époque et qui renferme des dépôts de roches carbonatées. Ces roches sédimentaires piègent le CO2 de l’atmosphère dans les océans. Une réaction qui est favorisée par la photosynthèse oxygénique justement. L’hypothèse d’Earthbloom est donc que l’accumulation des roches carbonatées que l’on retrouve à Red Stones pourrait correspondre à une explosion d’organismes produisant de la photosynthèse : un véritable bloom !

Le projet Earthbloom est piloté par Stefan Lalonde du laboratoire Géosciences Océan (LGO), lauréat d’une bourse « ERC Starting Grant » du Conseil européen de la recherche obtenue en 2017. Contact: stefan.lalonde@univ-brest.fr

Repère: les climats de la Terre