Aller au contenu. | Aller à la navigation

Outils personnels

    
Navigation
Vous êtes ici : Accueil / Bibliographie générale / Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus)

Touriya Atarhouch, Lukas Rüber, Elena G Gonzalez, Eva M Albert, Mohamed Rami, Allal Dakkak, and Rafael Zardoya (2006)

Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus)

Molecular Phylogenetics and Evolution, 39(2):373-383.

Fishery assessment models meant to determine sustainability of commercial marine fish failed to predict recent stock collapses due to overexploitation. One flaw of assessment models is that they strongly rely on catch and age-composition statistics, but largely ignore the genetic background of the studied populations. We examined population genetic structure of sardine (Sardina pilchardus) in the centraleastern and northeastern Atlantic Ocean and Mediterranean Sea to aid fishery management of this heavily fished small pelagic species. We found that sardine has a striking mitochondrial control region, and sequenced a fragment of 387 bp of its 5'-end in 261 individuals collected off the coasts of Morocco (Dakhla, Tantan, Safi, Larache, and Nador), Portugal (Quarteira), Spain (Pasajes, Barcelona), and Greece (Kavala). High levels of haplotypic diversity rendered a rather unresolved NJ phylogeny. The recovered tree had no phylogeographic structuring except for the clustering of 13 individuals of Safi. In contrast, individuals grouped together according to the presence or absence of a 13-bp insertion in the sequence. Phi(ST) pairwise comparisons and molecular variance analyses supported genetic differentiation between the population of Pasajes (Bay of Biscay), and those of the Mediterranean Sea and Moroccan coast, with a contact zone around the Strait of Gibraltar. This result confirms the existence of two subspecies, S. pilchardus pilchardus and S. pilchardus sardina that were previously identified based on meristics and morphometry. Mismatch distribution analysis showed that sardine populations are expanding since the Pleistocene. Surprisingly, the population of Safi showed strong and statistically significant levels of genetic differentiation that could be related with isolation and genetic drift. Comparative analysis of the Safi population versus the rest including mismatch distributions, and a Bayesian skyline plot suggest that the Safi population likely underwent an early genetic bottleneck. The genetic singularity of the Safi population could have been responsible for the historical collapse of this sardine stock in the 1970s.

Europe, Genetic Variation, DNA, Population Dynamics, Genetics, Phylogeny, Morocco, Sequence Analysis, Mitochondrial, Haplotypes, Fishes, Animals, Population, Molecular Sequence Data, Geography
PMID: 16216537

Actions sur le document

error while rendering collective.geo.kml.kmlbelowcontentviewlet
« Juin 2024 »
Juin
DiLuMaMeJeVeSa
1
2345678
9101112131415
16171819202122
23242526272829
30
Financement
Structures de recherche
Laboratoires associés