Tag Archive for: Biogeochemistry

The unaccounted dissolved iron (II) sink: Insights from dFe(II) concentrations in the deep Atlantic Ocean

Abstract

Hydrothermal vent sites found along mid-ocean ridges are sources of numerous reduced chemical species and trace elements. To establish dissolved iron (II) (dFe(II)) variability along the Mid Atlantic Ridge (between 39.5°N and 26°N), dFe(II) concentrations were measured above six hydrothermal vent sites, as well as at stations with no active hydrothermal activity. The dFe(II) concentrations ranged from 0.00 to 0.12 nmol L−1 (detection limit = 0.02 ± 0.02 nmol L−1) in non-hydrothermally affected regions to values as high as 12.8 nmol L−1 within hydrothermal plumes. Iron (II) in seawater is oxidised over a period of minutes to hours, which is on average two times faster than the time required to collect the sample from the deep ocean and its analysis in the onboard laboratory. A multiparametric equation was used to estimate the original dFe(II) concentration in the deep ocean. The in-situ temperature, pH, salinity and delay between sample collection and its analysis were considered. The results showed that dFe(II) plays a more significant role in the iron pool than previously accounted for, constituting a fraction >20 % of the dissolved iron pool, in contrast to <10 % of the iron pool formerly reported. This discrepancy is caused by Fe(II) loss during sampling when between 35 and 90 % of the dFe(II) gets oxidised. In-situ dFe(II) concentrations are therefore significantly higher than values reported in sedimentary and hydrothermal settings where Fe is added to the ocean in its reduced form. Consequently, the high dynamism of dFe(II) in hydrothermal environments masks the magnitude of dFe(II) sourced within the deep ocean.

Highlights

  • Considering oxidation, open ocean iron (II) concentrations are below 0.2 nmol L−1.
  • The highest measured iron (II) concentration was 69.6 nmol L−1 at the Rainbow vent.
  • In the open ocean iron (II) account for 20 % of the dissolved iron pool.
  • Oxygen variations within OMZ account for 60 % of iron(II) oxidation variability.

Reference

Gonzalez-Santana, D.; Lough, A. J. M.; Planquette, H.; Sarthou, G.; Tagliabue, A.; Lohan, M. C. The Unaccounted Dissolved Iron (II) Sink: Insights from DFe(II) Concentrations in the Deep Atlantic Ocean. Sci. Total Environ. 2023, 862, 161179.

https://doi.org/10.1016/j.scitotenv.2022.161179.

New guidelines for the application of Stokes’ models to the sinking velocity of marine aggregates

, ,

Numerical simulations of ocean biogeochemical cycles need to adequately represent particle sinking velocities (SV). For decades, Stokes’ Law estimating particle SV from density and size has been widely used. But while Stokes’ Law holds for small, smooth, and rigid spheres settling at low Reynolds number, it fails when applied to marine aggregates complex in shape, structure, and composition. Minerals and zooplankton can alter phytoplankton aggregates in ways that change their SV, potentially improving the applicability of Stokes’ models. Using rolling cylinders, we experimentally produced diatom aggregates in the presence and absence of minerals and/or microzooplankton. Minerals and to a lesser extent microzooplankton decreased aggregate size and roughness and increased their sphericity and compactness. Stokes’ Law parameterized with a fractal porosity modeled adequately size‐SV relationships for mineral‐loaded aggregates. Phytoplankton‐only aggregates and those exposed to microzooplankton followed the general Navier‐Stokes drag equation suggesting an indiscernible effect of microzooplankton and a drag coefficient too complex to be calculated with a Stokes’ assumption. We compared our results with a larger data set of ballasted and nonballasted marine aggregates. This confirmed that the size‐SV relationships for ballasted aggregates can be simulated by Stokes’ models with an adequate fractal porosity parameterization. Given the importance of mineral ballasting in the ocean, our findings could ease biogeochemical model parameterization for a significant pool of particles in the ocean and especially in the mesopelagic zone where the particulate organic matter : mineral ratio decreases. Our results also reinforce the importance of accounting for porosity as a decisive predictor of marine aggregate SV.

Sinking velocities vs. ESD (equivalent spherical diameter) for aggregates formed in each tank of the four treatments and comparison with theoretical expectations from different parameterizations of Stokes’ Law and the general Navier‐Stokes’ drag equation. P: phytoplankton; PZ: phytoplankton + microzooplankton (rotifers); PM: phytoplankton + mineral (calcite); PMZ: phytoplankton + mineral + microzooplankton. (a) Model 1, Stokes’ Law with constant porosities of 0% (dashed lines) and 99% (solid lines). (b) Model 2, general Navier‐Stokes’ drag law with constant drags of 1 (dashed lines) and 5 (solid lines), and a constant porosity of 99%. (c) Model 3, Stokes’ Law with a porosity scaled on a fractal geometry with coefficient a = 0.03 and D3 = 1.4 (dashed lines) and D3 = 1.8 (solid lines). (d) Model 4, general Navier‐Stokes’ drag law with a porosity scaled on a fractal geometry with coefficient a = 0.03 and D3 = 1.4 (solid lines) and 1.8 (dashed lines). See the text for details on drag calculation

Reference

Laurenceau-Cornec, E.C., Le Moigne, F.A.C., Gallinari, M., Moriceau, B., Toullec, J., Iversen, M.H., Engel, A., and De La Rocha, C.L. 2020. New guidelines for the application of Stokes’ models to the sinking velocity of marine aggregates. Limnol. Oceanogr. doi:10.1002/lno.11388.
Link to the journal:

Sponge skeletons as an important sink of silicon in the global oceans

Silicon (Si) is a pivotal element in the biogeochemical and ecological functioning of the ocean. The marine Si cycle is thought to be in internal equilibrium, but the recent discovery of Si entries through groundwater and glacial melting have increased the known Si inputs relative to the outputs in the global oceans. Known outputs are due to the burying of diatom skeletons or their conversion into authigenic clay by reverse weathering. Here we show that non-phototrophic organisms, such as sponges and radiolarians, also facilitate significant Si burial through their siliceous skeletons. Microscopic examination and digestion of sediments revealed that most burial occurs through sponge skeletons, which, being unusually resistant to dissolution, had passed unnoticed in the biogeochemical inventories of sediments. The preservation of sponge spicules in sediments was 45.2 ± 27.4%, but only 6.8 ± 10.1% for radiolarian testa and 8% for diatom frustules. Sponges lead to a global burial flux of 1.71 ± 1.61 TmolSi yr−1 and only 0.09 ± 0.05 TmolSi yr−1 occurs through radiolarians. Collectively, these two non-phototrophically produced silicas increase the Si output of the ocean to 12.8 TmolSi yr−1, which accounts for a previously ignored sink that is necessary to adequately assess the global balance of the marine Si cycle.

References

Maldonado, M., López-Acosta, M., Sitjà, C., García-Puig, M., Galobart, C., Ercilla, G., & Leynaert, A. (2019). Sponge skeletons as an important sink of silicon in the global oceans. Nature Geoscience. https://doi.org/10.1038/s41561-019-0430-7

 

Read the publication

Seminar by Julie Laroche, Professor at Dalhousie University (Canada) on Tuesday, May 28

Julie LaRoche, is a visiting professor at LEMAR as part of the OFI and EUR ISBlue, will hold a seminar on Tuesday 28 May at IUEM in amphitheatre D from 11:00 am.

Julie LaRoche, is professor and Canada Research Chair in Marine Microbial Genomics and Biogeochemistry, Department of Biology, Dalhousie University, Nova Scotia, Canada.

The title of her presentation will be: Dynamics of microbial community structure and marine dinitrogen fixation at a microbial observatory in the Northwest Atlantic Ocean.

Abstract:
Primary productivity is limited by the availability of fixed nitrogen in large regions of the oceans. Dinitrogen fixation, the only biological input pathway into the marine N cycle, is an energetically expensive biochemical process that reduces N2 gas into NH3, a form of fixed nitrogen that is readily incorporated into biomolecules. The nitrogen fixers, or diazotrophs, are a selected group of prokaryotic microorganisms that can carry out this biochemical process. Historically, marine nitrogen fixation was thought to be a process carried out primarily by cyanobacteria and important mainly in the tropical and subtropical oligotrophic waters. Recent realization concerning the wide diversity of marine microbes harboring the nitrogenase enzyme indicates that we do not fully understand the roles of the diverse diazotrophs that populate the ocean. In the context of the Ocean Frontier Institute located at Dalhousie University, the microbial community structure and function in Northwest Atlantic (NWA) have been assessed through next-generation sequencing of hypervariable regions of 16S and 18S rRNA genes, nifH gene and metagenomics at existing time-series stations since 2014. The nifH gene, a marker gene for diazotrophy, has shown that both cyanobacterial and non-cyanobacterial diazotrophs are members of the microbial communities in our NWA microbial observatories. The lecture will focus on the microbial community structure in the NWA, with a specific attention to the diazotrophs. In particular, the potential metabolic pathways identified from the genome annotation of a novel bacterial isolate, belonging to a clade of gamma-proteobacteria widely distributed in the Tara expedition database, will be discussed in a global context.

LMI DISCOH

LMI DISCOH logo

The main objective of LMI DISCOH is to study ocean-atmosphere, biogeochemical and ecological dynamics in the CHS in order to understand and anticipate the effect of intra-seasonal, interannual, decadal and climate change variability on coastal ecosystem dynamics. LMI contributes to the effective implementation of the ecosystem approach to fisheries.

From a scientific point of view, the LMI “DISCOH” complements projects under development (ANRs PEPS and TOPINEME, etc.) and aims to improve coordination between projects. In particular, LMI aims to direct the efforts of its participants towards major cross-cutting scientific issues.

In addition, LMI “DISCOH” supports the development of high-level Masters in Marine Sciences in Peru by promoting the participation of IRD researchers and other foreign scientists (courses and supervision of theses) and by supporting student and faculty exchanges, particularly in the region.

More information on the LMI DISCOH website