Agnès LEWDEN
Ecophysiologie des oiseaux marins
ATER
Université de Bretagne Occidentale
Ecophysiologie des oiseaux marins
ATER
Université de Bretagne Occidentale
Laboratoire LEMAR
Chibido
Pour en savoir plus sur mes recherches : https://youtu.be/b9_LXqCcTHU?si=L601tMrCNyQOq56p
et sur moi : https://journals.biologists.com/jeb/article/227/11/jeb248049/352634/ECR-Spotlight-Agnes-Lewden
17.06.2024 – https://www.univ-brest.fr/fr/actualite/lepreuve-thermique-des-manchots-pendant-la-mue
30.04.2024 – https://www.espace-sciences.org/sciences-ouest/419/actualite/coup-de-chaud-chez-les-manchots
01.03.2024 – https://journals.biologists.com/jeb/article/227/5/JEB246580/344067/Lovebird-cooling-before-after-and-on-the-fly
https://royalsocietypublishing.org/doi/full/10.1098/rsif.2023.0442
https://www.lefigaro.fr/sciences/les-manchots-adelie-vont-ils-avoir-trop-chaud-20230714
https://www.rcf.fr/culture/magazine?episode=383536
I am an eco-physiologist specialized in bird (penguins) energetics focusing on energy expenditure linked to thermoregulation. My research aims to understand heat exchange regulations between the organism and its environment but also within the organism (i.e. heterothermia) and the energetic consequences of the body/tissues temperature variations. Thus, I worked on thermoregulation processes in cold conditions with passerines wintering in Canada and on penguins spending foraging trips in cold water (see below).
In 2022, I obtained the international post-doc fellowship funding by ISblue (https://www.isblue.fr/en/) to work at the University of Brest Occidentale. My current projects aim to:
– Lewden A, Ward C, Noiret A, Avril S, Abolivier L, Gérard C, Hammer TL, Raymond E, Robin J-P, Viblanc VA, Bize P, Stier A (Under review) Surface temperatures are influenced by handling stress independently of glucocorticoid levels in wild king penguins.
doi: https://doi.org/10.1101/2023.06.16.545254
– Lewden A, Tristan Halna du Fretay, Stier A (Submitted) Changes in surface temperatures reveal the thermal challenge associated with catastrophic moult in captive Gentoo penguins.
doi: https://doi.org/10.1101/2024.01.16.575878
Particularly demanding from an energetic point of view, flapping flight exhibits the highest rates of energy expenditure of any mode of locomotion (Norberg 1990 – Animal Flight). However, many of the techniques used to study avian aerodynamics, biomechanics and energetics within a laboratory setting are not easily transferable into the field. The aim of this project was to understand how indirect proxies of flight energetics can best act as indicators of metabolic rate and avian biomechanical flight performance, and thus increase our understanding of bird flight energetic in wild condition.
– Lewden A, Bishop CM, Askew GN (2023) How birds dissipate heat before, during and after flight. https://royalsocietypublishing.org/doi/full/10.1098/rsif.2023.0442
– Lewden A, Evans A, Avery S, Bishop CM, Askew GN (In prep.) Flight energetics in lovebirds (Agapornis personatus) measured in wind tunnel using three proxies of respirometry.
The energetic cost of foraging activities in King Penguin consists in reaching favourable areas, in realizing deep dives in search of fish and in resting in high latitude cold water. Several studies have shown that resting in cold water could represent a more expensive cost than realizing deep dives. This paradox is probably linked with contrasting thermoregulation processes. During daylight, a general hypothermia occurs and is believed to reduce energy expenditure. However, a re-warming to normothermia occurs at sunset and contributes to increase heat-loss during the night. We hypothesise an energetic conflict between thermoregulation and digestive processes. During daylight, the organism may be unable to assimilate the end product of prey digestion (free fatty acids – FFA) into the peripheral subcutaneous adipose tissues (SAT), because skin is no more blood perfused. During the night, re-warming and re-connecting to blood circulation peripheral tissues could be inevitable to enable the assimilation of FFA into the SAT.
Thus, we measured an increase of subcutaneous temperatures (used as a proxy of blood perfusion) in implanted penguins maintained in sea water tank in feeding condition (Lewden et al. 2017a) supporting this hypothesis. However, we also observed an increase of peripheral temperatures in the same birds during fasting time (Lewden et al. 2017b). Furthermore, the oxygen consumption rate of birds increased with fasting duration in water, while it was also higher when the flank tissue was warmer, indicating a thermoregulation cost due to greater perfusion. Fasting king penguins in water maintained peripheral perfusion probably to access subcutaneous fat stores. Hence, the observed normothermia in peripheral tissues of king penguins at sea, upon completion of a foraging bout, is likely explained by their nutritional needs: depositing FFA in subcutaneous tissues after profitable foraging (feeding condition) or mobilizing FFA to fuel metabolism, when foraging success was insufficient (fasting condition).
– Lewden A, Nord A, Bonnet B, Chauvet F, Ancel A, McCafferty DJ 2020. Body surface rewarming in hypothermic and normothermic King penguins. Journal of Comparative Physiology B, 1-13
– Lewden A, Bonnet B, Nord A. 2020 The metabolic cost of subcutaneous and abdominal rewarming in King Penguins after long-term immersion in cold water. Journal of Thermal Biology, 102638
– Lewden A, Enstipp MR, Bonnet B, Bost C, Georges J-Y, Handrich Y 2017. Thermal strategies of king penguins during prolonged fasting in water. Journal of Experimental Biology 220(24), pp. 4600-4611
– Lewden A, Enstipp MR, Picard B, Van Walsum T, Handrich Y 2017. High peripheral temperatures in king penguins while resting at sea: thermoregulation versus fat deposition. Journal of Experimental Biology 220(17), pp. 3084-3094
During Canadian winter, chickadees have to cope with harsh conditions marked by a decrease of daytime reducing their foraging activity with an increase of fasting time during the night, not to mention the heat lost induced by low temperature. However, although they cannot accumulate large fat reserve that would impair their ability to fly, Black-capped chickadees demonstrate an ability to survive temperature gradients (body temperature – air temperature) higher than 40°C.
Independently to social rank, all studied individuals showed similar metabolic performance (Lewden et al. 2012) with an increase of pectoralis muscle mass explaining an increase of maximal thermogenic capacity (Msum; Petit, Lewden and Vézina 2014). Furthermore, chickadees expressed intra-seasonal metabolic flexibility (Petit, Lewden and Vézina 2013) but also hypothermic events during daytime (Lewden et al. 2014) in aim to adjust their energy expenditures during winter. Finally for this small passerine, the plumage represents an efficient insulating barrier to maintain the high stable temperature (Lewden et al. 2017) characteristic of endotherms.
– Lewden A, Nord A, Petit M, Vézina F 2017. Body temperature responses to handling stress in wintering Black-capped Chickadees (Poecile atricapillus L.). Physiology & Behavior 179, pp. 49-54
– Cortés PA, Petit M, Lewden A, Milbergue M, Vézina F 2015. Individual inconsistencies in basal and summit metabolic rate highlight flexibility of metabolic performance in a wintering passerine. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 323(3), pp. 179-190
– Petit M, Lewden A, Vézina F 2014. How Does Flexibility in Body Composition Relate to Seasonal Changes in Metabolic Performance in a Small Passerine Wintering at Northern Latitude? Physiological and
Biochemical Zoology 87(4), pp. 539-549
– Lewden A, Petit M, Milbergue M, Orio S, Vézina F 2014. Evidence of facultative daytime hypothermia in a small passerine wintering at northern latitudes. Ibis 156(2), pp. 321-329
– Petit M, Lewden A, Vézina F 2013. Intra-Seasonal Flexibility in Avian Metabolic Performance Highlights the Uncoupling of Basal Metabolic Rate and Thermogenic Capacity. PLoS ONE 8(6), pp. 68292-
68292
– Lewden A, Petit M, Vézina F. 2012. Dominant black-capped chickadees pay no maintenance energy costs for their wintering status and are not better at enduring cold than subordinate individuals. Journal of Comparative Physiology B 182(3), pp. 381-392
– Lewden A, Kiss S, Barracho T, Barbraud C (2023) First record of long-tailed skua Stercorarius logicaudus in Terre Adélie (140°1’E, 66°40’S). http://www.marineornithology.org/article?rn=1541
– Delord K, Pinet P, Pinaud D, Barbraud C, De Grissac S, Lewden A, Cherel Y, Weimerskirch H 2016. Species-specific foraging strategies and segregation mechanisms of sympatric Antarctic fulmarine petrels throughout the annual cycle. Ibis 158(3), pp. 569-586
– Lacoste-Garanger N, Lanshere J, Lewden A. 2013. Assembling a skeleton of an Emperor Penguin (Aptenodytes forsteri) in Adelie Land (Antarctica): interest of amphipods in the bones cleaning. Cahier d’Anatomie Comparée.
Après un master canadien étudiant la capacité d’acclimatation au froid de la mésange à tête noire (Poecile atricapillus), je suis partie hiverner en Antarctique en tant que biologiste/écologue. A mon retour, j’ai complété une thèse à l’Université de Strasbourg étudiant les stratégies de thermorégulation liées aux contraintes physiologiques et environnementales chez le manchot royal (Aptenodytes patagonicus). J’ai ensuite effectué un premier post-doctorat à l’Université de Leeds (Royaume-Uni) où j’ai travaillé pendant trois ans sur l’énergétique du vol des oiseaux en conditions expérimentales. Aujourd’hui je suis post-doctorante à l’Université de Brest Occidentale suite à l’obtention de la bourse « international post-doc fellowship » proposée par l’école universitaire de recherche ISblue (https://www.isblue.fr/).
Mes travaux de recherche visent à mesurer les échanges thermiques entre les individus et leurs environnements et d’en comprendre les effets sur leurs organismes, leurs dépenses énergétiques mais également sur leurs comportements et ultimement sur leurs descendants. Pour se faire, j’étudie des espèces antarctiques et arctiques dans leur milieu naturel et en condition de captivité en mesurant leurs températures corporelles, leurs métabolismes et d’autres paramètres physiologiques tels que le niveau de déshydratation, mais aussi leur succès reproducteur.