

EDDY-TOPOGRAPHY INTERACTIONS AND THE FATE OF THE PERSIAN GULF OUTFLOW

SYNBIOS workshop

July 7, 2015

Clément Vic¹ G. Roullet¹ X. Capet² X. Carton¹ J. Molemaker³ J. Gula¹

¹Laboratoire de Physique des Océans, Brest, France

²LOCEAN, Paris, France

³UCLA, Los Angeles, USA

Intro	Phenomenology	Processes	Consequences	Conclusions
OUTLINE				

- 1. Context & Issues
- 2. Phenomenology Realistic Simulation
- 3. Processes Idealized Simulation
- 4. Turbulent Diffusion
- 5. Conclusions

INTRO

Intro

Processes

Consequence

CONTEXT - GEOGRAPHY

Intro	Phenomenology	Processes	Consequences	Conclusions
CONT	EXT - OUTFLOW PF	ROPERTIES		
-	 → Persian Gulf Outflo Strait of Hormuz (~ → Neutral buoyancy a 	w (warm and s ~ 40-100 m). at ~ 200-300 n	alty waters) through n.	the
	Salinity - 300 m - July	36.8	Temperature - 300 m - July	-
24°I		24°N		17
20°1	N	36.4 20°N		16
16°1	v v	36.0 16°N		15
101				14
12°l	N VICTOR	20.0 12°N		13
8°1	4	35.2 8°N		12

[climatologies derived from ARGO floats (2006-2010), figures from Carton et al. 2012]

48°E

54°E

60°E

66°E

54°E

48°E

60°E

66°E

12

Intro

henomenology

Processes

Consequences

Conclusions

CONTEXT - DYNAMICAL ENVIRONMENT

[Eddy Available Potential Energy derived from ARGO floats, Roullet et al. 2014]

- → Shallow equilibrium depth (\sim 200-300 m)
- → Western Boundary : high level of mesoscale turbulence (remotely forced)

Intro

Processes

Consequences

CONTEXT - DYNAMICAL ENVIRONMENT

- → Shallow equilibrium depth (\sim 200-300 m)
- → Western Boundary : high level of mesoscale turbulence (remotely forced)
- → Confined environment : westward drifting eddies are trapped and interact with the topography (continental slope)

Similarity with the Red Sea Outflow \rightarrow Eddy-outflow interactions are to be expected [Ilicak et al. 2011, Bower & Furey 2012]

ISSUES & METHODS

Issues

How mesoscale eddies interact with the Persian Gulf Outflow ? How is Persian Gulf Water (PGW) spread in the Gulf of Oman ?

Methods

- → High resolution (2 km) nested regional numerical simulation (ROMS)
- → Idealized simulations (ROMS)

PHENOMENOLOGY

ro	Phenomenology	Processes
----	---------------	-----------

Consequence

Conclusions

REALISTIC SIMULATION (4 YEARS)

- → ROMS one-way nested configuration (black rectangle) from an Arabian Sea solution at $\Delta x = 6.6$ km.
- → $\Delta x = 2$ km, submesoscale permitting ($R_d = 41$ km).
- → Monthly climatological forcing : QuikSCOW wind stress and ICOADS heating and freshwater fluxes.
- → Semi-analytical western boundary in the shallow Strait of Hormuz from moored ADCPs and T-S measurements [Johns et al. 2003]

Intro	Phenomenology	Processes	Consequences	Conclusions

 Intro
 Phenomenology
 Processes
 Consequences
 Conclus

 AN INTERMITTENT SLOPE CURRENT CONTAINING PGW

- → The slope current is discontinuous and intermittent along the southern boundary (expected from Coriolis force).
- \rightarrow Salt is rapidly diluted from the Strait to the end of the Gulf.

Consequence

Conclusions

ROLE OF MESOSCALE EDDIES

 → The fate of the outflow is tightly linked with surface intensified mesoscale eddies, at a seasonal time scale.
 → Cyclones steer PGW southward.
 → Anticyclones steer

PGW northward.

Consequence

Conclusions

SUBMESOSCALE COHERENT VORTICES (SCVS) CONTAIN PGW

- → Mesoscale eddies, remotely formed and propagating into the Gulf, detach fragments of PGW from the slope.
- → PGW is trapped into, above or beneath SCVs.

→ SCV properties : $|\zeta|/f \sim 1$, $L < R_d$, core located at depth ~100-300 m polarity : opposed to the neighbouring mesoscale eddy,

trajectory : advection along the edges of mesoscale eddy,

SCV LIFE CYCLE

Joint Probability Density Function of $\zeta = v_x - u_y \text{ and}$ $\alpha = \left[(v_x + u_y)^2 + (u_x - v_y)^2 \right]^{1/2}.$

- → Short life cycle :< 10 days
- → Strong surrounding deformation field :
 - $ightarrow {\rm div.} \; \delta = u_x + v_y \sim f$
 - ightarrow shear $s = v_x + u_y \sim f$
 - \rightarrow strain $\sigma = u_x v_y \sim f$ Thus competing with ζ .
- → Limit of resolution of the model ?

	÷	

Phenomenology

Processes

Consequence

Conclusions

PASSIVE ROLE OF THE OUTFLOW ?

- → Non Co-localization of the salt (hydrological) and relative vorticity (dynamical) cores.
- → PGW is embedded into SCVs but is not necessarily in their cores.

- → How SCVs are formed ?
- \rightarrow Is the outflow passive in the formation of SCVs ?

PROCESSES

Consequence

Conclusions

IDEALIZED EXPERIMENT - SET UP

- → Idealized Gulf of Oman : extents, R_d , Δx , ...
- $\rightarrow\,$ Free decay of mesoscale eddies with a realistic energy level.
- \rightarrow With/without bottom friction (linear drag, $C_D = 3 \ 10^{-4} \ {\rm m \ s^{-1}})$

Intro	Phenomenology	Processes	Consequences	Conclusions

Intro Phenomeno	Intro	Phenomenol
-----------------	-------	------------

BOUNDARY LAYER DYNAMICS

→ Mesoscale eddies have a strong imprint on ζ at depth [Carton et al. 2012, L'Hégaret et al. 2013].

	÷	

Consequence

BOUNDARY LAYER DYNAMICS

- → Mesoscale eddies have a strong imprint on ζ at depth [Carton et al. 2012, L'Hégaret et al. 2013].
- → Intense vorticity strips are generated in boundary layers $|\zeta|/f > 1$. They roll up in the interior into SCVs, being unstable for the centrifugal instability $(\zeta < 0)$ or barotropic (shear) instability $(\zeta > 0)$ [D'Asaro 1988, Molemaker et al. 2014, Gula et al. 2015].

Intro	Phenomenology	Processes	Consequences	Conclusions
		\sim		

- → Mesoscale eddies have a strong imprint on ζ at depth [Carton et al. 2012, L'Hégaret et al. 2013].
- → Intense vorticity strips are generated in boundary layers $|\zeta|/f > 1$. They roll up in the interior into SCVs, being unstable for the centrifugal instability $(\zeta < 0)$ or barotropic (shear) instability $(\zeta > 0)$ [D'Asaro 1988, Molemaker et al. 2014, Gula et al. 2015].
- → Friction acts on mesoscale eddy velocity and neither topographic irregularity nor density current is required for detachment of SCVs.

Intro	Phenomenology	Processes	Consequences	Conclusions
				1

ENSTROPHY SOURCE ON THE CONTINENTAL SLOPE

→ The enstrophy $\zeta^2/2$ source is localized on the continental slope where mesoscale eddies drag.

Intro

Processes

Consequences

Conclusions

ENSTROPHY SOURCE ON THE CONTINENTAL SLOPE

- → The enstrophy $\zeta^2/2$ source is localized on the continental slope where mesoscale eddies drag.
- → Experiments with/without bottom stress highlight that the enstrophy source is due to friction.

Intro

Processes

Consequences

Conclusions

ENSTROPHY SOURCE ON THE CONTINENTAL SLOPE

- → The enstrophy $\zeta^2/2$ source is localized on the continental slope where mesoscale eddies drag.
- → Experiments with/without bottom stress highlight that the enstrophy source is due to friction.
- → The ROMS model (σ-coordinates) vertical boundary layer implies a horizontal shear layer

[Molemaker et al. 2014, Gula et al. GRL 2015].

CONSEQUENCES

LAGRANGIAN PERSPECTIVE

→ Continuous release of synthetic particles in the Strait at the outflow depth

[code described in Gula et al. JPO 2014]

	÷	

LAGRANGIAN PERSPECTIVE

→ Continuous release of synthetic particles in the Strait at the outflow depth

[code described in Gula et al. JPO 2014]

→ Diffusion-like dispersion of particles : linear in time, typical of a random-walk process.

 $< d^2(t) >= 4D t$

→ Eddy diffusivity $D \sim 2000 \text{ m}^2 \text{ s}^{-1}$, similar to highly diffusive regimes (ACC, $D \sim 3000 \text{ m}^2 \text{ s}^{-1}$ [Abernathey et al. 2010])

CONCLUSIONS

CONCLUSION

How mesoscale eddies interact with the Persian Gulf Outflow ? How is PGW spread in the Gulf of Oman ?

- → Eddy-topography interactions produce high vorticity strips that roll up into Submesoscale Coherent Vortices. Friction is responsible for the generation of enstrophy in boundary layers, especially on the continental slope.
- → These SCVs trap Persian Gulf Water and participate actively to its spreading in the Gulf of Oman.
- → Small-scale eddy-topography interactions lead to turbulent diffusion processes that have a large-scale effect on the salt distribution.

SENSITIVITY TO THE BOTTOM STRESS [1/2]

How is the boundary layer sensitive to the bottom stress parameterization?

Same experiments with :

- 1. Linear bottom stress : $\boldsymbol{\tau}_{b} = -\rho_{0} C_{D}^{lin} \boldsymbol{u}$, constant C_{D}
- 2. Quadratic bottom stress : $\boldsymbol{\tau}_{b} = -\rho_{0} C_{D}^{quad} ||\boldsymbol{u}||\boldsymbol{u}$, constant C_{D}
- 3. Quadratic bottom stress with a variable C_D : $C_D^{VonKarman} = \left(\frac{\kappa}{\log(\Delta z_b/z_r)}\right)^2$,
 - $\kappa = 0.41$: Von Karman constant,

 z_r : roughness parameter $O(10^{-2} - 10^{-3} \text{ m})$

SENSITIVITY TO THE BOTTOM STRESS [2/2]

Туре	C_D	< au >	$std(u_{bottom})$
		$[\times 10^{-3} N m^{-2}]$	$[cm \ s^{-1}]$
	(1		
Linear	$3.0 \ 10^{-4} \ \mathrm{m \ s^{-1}}$	12.4	4.7
Linear	$6.0 \ 10^{-4} \ {\rm m \ s^{-1}}$	17.1 (+38%)	3.3 (-30%)
Quadratic	$2.5 \ 10^{-3}$	8.7	5.1
Quadratic	$5.0 \ 10^{-3}$	12.2 (+28%)	4.2 (-18%)
Quadratic with	varying	7.9	5.1
Von Karman C_D			

