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Motivations: 1/36° Eastern Mediterranean basin   
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Motivations: formation of coastal eddies Mediterranean Sea 

SST 18 June 2006  
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Motivations: formation area over steep or smooth shelf slope ? 

Mkhinini et al. JGR (2014) 
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Motivations: Bransfield Current (Antarctica) 

COUPLING in-situ survey 2010 
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Buoyant coastal current : Bransfield strait bathymetry (Antarctica) 

s~8% 

s~16% 
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Buoyant coastal current :  
Bransfield current (Antarctica) 

COUPLING Campaign 2010 
 
CTD Transect 1b 

isopycnal slope α ~ 1 % 
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Buoyant coastal current : stable Bransfield current (Antarctica) 
VELOCITY PROFILE DRIFTERS TRAJECTORIES 

Zhou et al. 2002 

Sangra et al. DSR 2011, Poulin et al. JPO 2014 
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Simple configuration 

Surprisingly… no clear answers 

Simple questions: impact of the coastal shelf 

-   stabilize / destabilize   ?  

-   unstable wavelength selection ?  

-   Size and vertical structure of detached eddies ? 

Surface intensified current U1 

U2 << U1 

Vertical stratification 

Shelf bathymetry 
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What do we learn from linear stability analysis ?  
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Phillips model, QG two layers 

What do we learn from simple models ?  

γ =H1/H2 

Growth rates 

kRd ~ 0.65 h2 ~ 2.5 h1 
λmax  ~ 9 Rd  

γ ~0.4 
Bransfield current 
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Stratification parameter 	



What do we learn from simple models ?  

γ =H1/H2=1 
linear stratification 

N =Cst
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γ =0.4 

Stratification parameter 	



What do we learn from simple models ?  

γ =H1/H2<1 

Stratification amplified  
at the surface 

N ≠Cst
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What do we learn from simple models ?  

Phillips two layers QG model 
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What do we learn from simple models ?  

Phillips two layers QG model 

Long wavelength cutoff  Small wavelength selection 
& STABILIZATION 
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Buoyant coastal front, flat bottom 

L=Rd 

Surface advected (H1=H2 /10) 

Gula, Zeitlin & Bouchut, J. Fluid Mech. (2010) 

Frontal-Rossby modes 
(i.e. Rossby-Rossby) Poincarré-Rossby modes 

Geostrophic instability Ageostrophic instability 

 kRd ~ 1.5   kRd ~ 6 
Boss, et al.  (1996) 

γ=Η1/Η2 ~ 0.1 

Bu=1 

What do we learn from RSW models ?  
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Impact of bottom slope (two-layer models) 

Phillips QG model 
Coastal current (no outcropping) 

 

RSW model 
Coastal front (with outcropping) 

To To 

kRd kRd 

Topographic parameter 

€ 

To= sα

kRd σmax	

To < 0  Gula & Zeitlin (2014) Mysak JPO (1977) 
Pennel PhD (2012) 
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Impact of bottom slope: topographic parameter 

Phase speed of Topographic Rossby Waves VTRW ≈ −s f
Hk2

Upper layer jet velocity Vcurrent =
g*
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k2Rd
2 ≈ −

VTRW
Vcurrent

when kRd ~ 1 

To < 0 Vjet VTRW > 0 prograde topography 

To > 0 Vjet VTRW < 0 retrograde topography 
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Current instabilities and coastal eddies along the shelf 

Impact of bottom slope: simple mechanism 

surface layer 
Ucurrent VRossby/frontal 

bottom layer 
 

 shelf slope 

VTRW 

shallow  

deep  Topographic 
Rossby Waves 

VTRW ≈ −s f
Hk2

Ucurrent – VR = VTRW + γVR kRd s<0 

Phase speed locking 



Topographic parameter 

To =  s / α < 0   

Vertical stratification parameter 

γ =  H1 / Η2  = 0.4  

Shallow-water model: idealized two layers configuration 
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Shallow-water model: 
 idealized two layers configuration 

Two unstable modes: A,B 

To=0 

To=-1 

To=-5 

To=-15 
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Shallow-water model: 
idealized two layers configuration 

QG 
1 layer 

QG 
2 layers 

RSW 
2 layers 

A B 

mode A   
baroclinic 
instability 

mode B   
barotropic 

shear 
instability 

A 

B 

To = -15 

Poulin et al. JPO (2014) 

Coastal current along steep shelf bathymetry 



What do we learn from laboratory experiments ?  
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What do we learn from previous studies ?  

Wolf & Cenedese,  
J. Phys. Oceanogr.(2006) 

s2 = 0 s2 ~ 370% 
smaller meanders 

H1 ~ H2 /2 

formation of large eddy 

Surface advected configuration  

Coastal current along steep shelf bathymetry 



What do we learn from laboratory studies ?  

Coastal gravity current in the Trondheim rotating platform (5m diameter) 

Flat bottom s=0 Steep slope s=50% 
© Sandy Gregorio 
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Idealized configuration: experimental setup 

Initial and adjusted configurations  
side view of the two layer salt stratifications 

top view with    PIV particles 

side view    LIF visualization 

FRONT CURRENT 
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High resolution  
PIV measurements:  
4800x3200  
pixels camera 

COASTAL FRONT 
FLAT BOTTOM CASE 
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High resolution  
PIV measurements:  
surface vorticity 
 
 
 
blue: anticyclonic 
red: cyclonic 

COASTAL FRONT 
FLAT BOTTOM CASE 
 
Black contours Okubo-Weiss criterion  
(Isern-Fontanet et al. 2003) 
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High resolution  
PIV measurements:  
surface vorticity 
 
 
 
blue: anticyclonic 
red: cyclonic 

LINEAR SHELF 

Topographic parameter 

To =
s

α
= −1.3
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Géhéniau et al. (to be submitted) 

Estimation of unstable growth rates 
(flat bottom case s=0) 

Level of non-linear saturation 

Evolution of cross shore KE/KETot 

Toc ~ -3.5 
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The most unstable wavenumber increases 
when the shelf slope increases 

Below a critical steepness 
barotropic shear instability only 

What do we learn from numerical simulations ?  

NEMO 

Coastal current along steep shelf bathymetry 



The most unstable wavenumber increases 
when the shelf slope increases 

Below a critical steepness 
barotropic shear instability only 

s 

ρ1 

ρ2 

Vmax 

h1 

h2 
γ = h1/h2= 0.3 

To= s/α 
s 

Ro= Vmax/(f Rd)=0.35  

Topographic impact: NEMO simulations / lab configuration 
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The most unstable wavenumber increases 
when the shelf slope increases 

Below a critical steepness 
barotropic shear instability only 

Topographic impact on: eddy size 

non-linear saturation 

reddy ∼ λ/4  

λm	



reddy	
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The most unstable wavenumber increases 
when the shelf slope increases 

Below a critical steepness 
barotropic shear instability only 

Secondary linear process: flat bottom To=0 

meso scale 
cyclones 

reddy ~ 2.5 Rd 
Pennel et al. JPO (2012) 
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The most unstable wavenumber increases 
when the shelf slope increases 

Below a critical steepness 
barotropic shear instability only 

Secondary linear process: flat bottom To=-2.6 

submeso scale 
cyclones 

reddy ~ Rd/2 
Pennel et al. JPO (2012) 
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The most unstable wavenumber increases 
when the shelf slope increases 

Below a critical steepness 
barotropic shear instability only 

CONCLUSIONS 

Linear stability is not enough, non-linear shelf stabilization is crucial 

 Various dynamical regimes  

 1- Standard baroclinic instability, meso-scale anticyclones 
  strong cross-shelf exchanges 

Direct cascade towards sub meso-scale eddies may occurs ! 

 2- Rossby-TRW instability, Trapped Coastal Instability 
    reduced cross-shelf exchanges, small-scale trapped eddies 

 3- Strong non-linear stabilization, weak barotropic shear disturbances 
    no cross-shelf exchanges, strong along shore transport 

Next step… next talk:  fully stratified configuration (Bu, γ, Tp) 

Coastal current along steep shelf bathymetry 


