Eddy driven ventilation in the Arabian Sea

Zouhair Lachkar (NYUAD) Shafer Smith (Courant/NYU)

> SYNBIOS Paris / July 2015

NEW YORK UNIVERSITY

ABU DHABI

Outline

- Why the Arabian Sea?
- Project: Effects of changing monsoonal winds on Arabian Sea biogeochemistry, focus on oxygen
- Dynamics of oxygen in the oceans and the AS
- ROMS simulations of the AS
- Speculation

What makes the Arabian Sea unique?

- Extreme seasonality & complex dynamics (monsoon reversal, coastal upwelling, offshore advection, winter convection, eddies,...)
- Among the most productive (> 300 gC m⁻² yr⁻¹)
- 2/3 of dust deposited in ocean → Indian Ocean
- Thickest Oxygen Minimum Zone (150-1200m)
- Largest suboxic zone
- 1/2 of global N loss due to denitrification and anammox
- A globally significant source of N₂O (nitrous oxide)
- Potential to modulate climate on geological timescales

Chlorophyll from ECCO2

Williams & Follows 2007

Coastal upwelling systems

Annual mean surface chlorophyll from SeaWiFS

Coastal upwelling systems

Arabian Sea: the only western boundary upwelling system

Arabian Sea: Two blooms per year!

28°N

24°N

Summer

Winter

Summer monsoon winds drives upwelling along Somali coast 20*N 16*N 12*N 40*E 50*E 60*E 70*E 60*E 70*E

> Winter monsoon winds drives convection at north of basin

> > Ocean color from SeaWifs

Oxygen minimum zones (OMZs)

Generally in eastern boundaries, with one exception: Indian Ocean OMZ - northeast of basin

Ocean deoxygenation: the global perspective Warming is causing the ocean to lose oxygen

The ocean outgassing trend is larger than expected based on the solubility only

Oxygen: biological effects

Oxygen: production & respiration & ventilation

made with Adobe Illustrator™

Indian Ocean: most isopycnals unventilated

30

25

20

15

10

5

Tpot-0 [°C]

Indian Ocean

Indian Ocean: ... less ventilated

In O₂-depleted water: denitrification

Denitrification in Arabian Sea → 30-50% global loss of fixed N

The Monsoon — Arabian Sea climate feedback

Observations & models → recent and future monsoon strengthening?

Sandeep and Ajayamohan, submitted

The Monsoon – Arabian Sea climate feedback

Paleo data → high sensitivity of Arabian Sea OMZ to NH climate variations

Regional Oceanic Modeling System (ROMS) Resolution: 1/3, 1/6, 1/12, 1/24 deg, 32 levels **Atmospheric forcing:** COADS, QuikSCAT Varied winds: 0.5x, 1x, 1.5x **Boundary conditions:** SODA reanalysis 30°N W/ & W/O Marginal Seas **Climatological runs (12 year) Biological model:** NPZD, N³P²Z²D², BioEBUS

Run on NYUAD Butinah cluster

20°N -

0°

Model setup

(Simple) biogeochemistry model NPZD + O₂ + Denitrification

Model vs. observations: surface temperature

Model vs. observations: surface salinity

Model fields (1/24°) — surface

CHL

SST

January

Model fields (1/24°) — sections at 17N

What happens when winds are reduced or increased?

Biogeochemical response to changes in monsoon intensity

Production: scales linearly with perturbation Hypoxic volume: smaller response

Relative change (%)

Depth of hypoxic boundary with increased winds

1/12º runs

New primary production with increased winds

Scales linearly with wind perturbation (intensification of upwelling)

What happens when resolution is systematically increased?

O₂ at 100m

Denitrifcation rate (mol N m² yr⁻¹)

N²PZD²

Denitrifcation induced NPP reduction (mol C m² yr⁻¹) N²PZD²

Difference in PP between simulations with O₂ and NO₃ coupled and uncoupled. With nitrate decoupled, denitrification cannot reduce PP. Moreover, because it's effect is bigger at low resolution there's a bigger decrease at low resolution

Changes to PP and O₂ with increased resolution

In addition to changes in denitrification, increasing resolution from 1/3° to 1/12°:

- Moves OMZ downward but volume doesn't increase
- Increases PP monotonically

Increasing resolution from 1/12° to 1/24°:

- Doesn't change PP
- Decreases volume of OMZ

No slides :(

Implications

Increasing resolution from 1/3° to 1/12°:

- Ventilation increases with resolution, decreasing denitrification, thus increasing PP
- ... but the increased respiration and increased ventilation compensate in their effect on oxygen, so there's no change in total OMZ volume.

Increasing resolution from 1/12° to 1/24°:

 As submesoscales start to be resolved, something changes: PP does not increase, and the OMZ decreases. We are trying to understand why.

Hypotheses

- 1. As submesoscales are resolved, the active mixING layer increases in depth, and exceeds the depth of the euphotic zone, which decreases the net PP.
- 2. An asymmetry in the submesoscale vertical fluxes* allows ventilation to increase without a corresponding increase in the flux of nitrate to the surface layers, even though there's more nitrate at depth b/c of decreased denitrification.

* This is perhaps consistent with Gula et al. (2014): cold filaments, with strong downward ageostrophic vertical velocities and diapycnal mixing, are more common than warm filaments. See also Hakim et al. (2001) and Lapeyre et al. (2006)

Gula, Molemaker & McWilliams (2014 JPO)

MixING layer depths

MLD deepens as resolution increases, then shallows at highest resolution: submesoscale restratification?

Vertical velocities (1/24°)

100 m

January

50 m

Histogram of <w'O₂'> at 200m

