Various regimes of instability and formation of coastal eddies along the shelf bathymetry

Laura Cimoli ^(1,3), Alexandre Stegner ⁽²⁾, Guillaume Roullet⁽³⁾ (1) University of Oxford, UK (2) LMD, CNRS-Ecole Polytechnique, Paris (3) LPO, UBO, Brest

Synbios Workshop, 6-8 July 2015, Paris

Motivations

Extend the linear stability analysis of Poulin et al 2014

Two-layer SW model

Prograde jet over a slope

Shear instability vs. **Baroclinic instability**

То

- Continuous stratification
- Nonlinear evolution

=> idealized simulations using ROMS / periodic channel

The jet configuration [Bransfield jet]

Ro = 0.25

Bu = 0.25

Control parameters : T_p and [X]

Aspect ratio

Topographic parameter [c_{TRW} / U]

$$\gamma = \frac{H_{\rm jet}}{\mathbf{H} - H_{\rm jet}}$$

$$T_p = \frac{\mathbf{s} f R_d^2}{\mathbf{H} U}$$

ANote that $R_d = f(H)$

PV structure (QG interpretation)

Four regimes

ndard baroclinic instability (BI)

Regime 2: trapped coastal instability (TCI)

asi stable along-slope current (ASC)

Regime 4: shear instability (SI)

Saturation parameter

$$\epsilon = 2 \frac{\int v^2 \, dv}{\int u^2 + v^2 \, dv}$$

2 * Cross shore KE / total KE

time

Linear growth

Nonlinear saturation vs. full instability

PV interpretation : the standard baroclinic instability (1)

Classical BI : dipole of stretching in the vertical

full breaking of the jet

PV interpretation : the trapped coastal instability (2)

Dipole of stretching=> BI => barotropization Topographic PV halts the barotropization

Trapped coastal instability

In all cases : trapping on the slope, no cross-slope exchange

nonlinear stabilization : $T_p \sim -0.3 / M_{max} \sim 0.75$

Full breaking: $T_p \sim -0.1 / M_{max} = 1$

PV interpretation : the quasi-stable case (3)

Screening of the interior cyclonic core of stretching => no BCI Almost barotropic jet => [q ~ (f+)/H]

Topographic PV dominates vorticity => quasi stable

Shear instability (4)

Large H => BCI growth rate goes to 0

Shear instability takes over

Independent of the topography => full breaking

Summary

Summary

- Standard baroclinic instability : T_p < -0.05 (weak slope)
- Trapped coastal instability (mild slope + mild depth) -0.4 < T_p < -0.05 and 0.1 < \boxed{W} < 0.3
- Quasi-stable current (steep slope + shallow) $T_p < -0.2$ and $\swarrow > 0.3$
- Shear Instability : X < 0.1 (very deep ocean)