Anticyclone formation through submesoscale interactions at the shelf break

Jeroen Molemaker, UCLA

ROMS

Multiple Nested Grids

SST off California

Relative vorticity

z = 150 m

Vorticity and Temperature at z = 150 m

 $\boldsymbol{\Pi} = (\boldsymbol{\zeta} + \mathbf{f}) \cdot \boldsymbol{\nabla} b$

Vorticity z= 250 m

Vertical Structure

Monterey Bay

Cross-shore section

Pushing the envelope of centrifugal instability

Subsurface Anti-cyclones at the end of

PDF of relative vorticity at 150m

Post critical mixing?

* AAI (Yavneh et al., 2001, McWilliams et al. 2004, Molemaker et al. 2005)

* Vertical Shear

 $\boldsymbol{\Pi} = (\boldsymbol{\zeta} + \mathbf{f}) \cdot \boldsymbol{\nabla} b$

Bottom Pressure torque and Form Stress

$$T = J(p_b, H)$$

$$p_{bH_0} = -\int \frac{\mathcal{T}}{\partial H/\partial n} \, ds.$$

Divergence variance

Mesoscale and SubMesoscale Kinetic energy

Enhanced energy dissipation

Subsurface Anti-Cyclones in an Western Boundary Current

SST near Cape Hatteras

Surface Relative Vorticity

Summary

- A bottom turbulent boundary layer on a slope leads to horizontal shear
- Coastally trapped current can separate
- Instability occurs; sign of shear is critical
- Centrifugal instability leads to vertical exchange and local energy dissipation
- Shear production and separation of slope current is ubiquitous

#3703581 : patel:sm.patel:FxNestingSims.FB_Cam02SimA-0001 - 13:22 Jan 07

0001