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Eddies from instability

Flat bottom Steep shelf

I Laboratory vorticity field (red: cyclonic/ blue: anticyclonic)

I Instability of a baroclinic current: R. Pennel, A. Stegner and K. Beranger
(2012); F.G. Poulin, A. Stegner, M. Hernandez-Arencibia, A. Marrero-Diaz, and
P. Sangra (2014)

I Another mechanism: same-signed eddies, no current, no instability. Just linear
shelf waves.



The simplest geometry
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I Channel with rigid side walls at y = 0, L, rigid lid at z = H.

I Channel floor is given by h(x , y) = αβ(x)y .

I α the bottom slope.

I β(x) is O(1) giving alongshore slope variation.

I A wave excited in x > 0 propagates along the wall y = L and
encounters a region of weaker slope.



The model

I Boussinesq with total density ρ0(z) + ρ(x , y , z , t),
and pressure p0(z) + p(x , y , t), such that the equilibrium
values ρ0 and p0 are in hydrostatic balance, i.e.
dp0/dz = −ρ0g .

I σ = (−ρ/ρ∗)g buoyancy acceleration

I N 2 = −(g/ρ∗)dρ0/dz buoyancy frequency

I ρ∗ is a constant reference density



Governing equations

Horizontal momentum:
Du

Dt
− fv = − 1

ρ∗
px ,

Dv

Dt
+ fu = − 1

ρ∗
py ,

Hydrostatic: pz = σ,

Mass conservation:
Dσ

Dt
+N 2w = 0,

Continuity: ux + vy + wz = 0,

Boundary conditions: v = 0, at y = 0, L,

w = 0, on z = H,

w = uhx + vhy on z = h(x , y),

i.e. w = uαβ′(x)y + vαβ(x), at z = αβ(x)y .

Here D
Dt = ∂t + u∂x + v∂y + w∂z .



Non-dimensionalisation

(x ′, y ′, z ′) = (x/L, y/L, z/H),

(u′, v ′,w ′) = (u/U, v/U,wL/UH),

p′ = p/ρ ∗ fUL,

σ′ = σH/ρ ∗ fUL,

t ′ = t/f δ.

Two small parameters:

I δ = αL/H the non-dimensional fractional depth change across
the shelf

I Ro = U/fL Rossby number

One order unity parameter:
B(z) = N (z)H/fL, a Burger number measuring stratification
strength



Non-dimensional equations

δut + Ro(uux + vuy + wuz)− v = −px ,

δvt + Ro(uvx + vvy + wvz) + u = −py ,

δσt + Ro(uσx + vσy ) + B2w = 0,

σ = pz ,

ux + vy + wz = 0.

Boundary conditions: no normal flow

v = 0, at y = 0, 1,

w = 0, at z = 1,

w = δ(uhx + vhy ), on z = δh.

i.e. w = δ(uβ′y + vβ), at z = δβy .

Geostrophic limit: δ → 0, Ro→ 0 with δ/Ro fixed.
In fact can choose velocity scale U such that δ/Ro = 1.



Geostrophic limit

D

Dt
(pxx + pyy + (B−2pz)z) = 0, where

D

Dt
= ∂t +

∂(p, .)

∂(x , y)
,

D

Dt
(pz) = 0, on z = 1,

D

Dt
(pz + h) = 0, on z = 0.

For flow started from rest (p ≡ 0 at t = 0),

pxx + pyy + (B−2pz)z = 0,

pz = 0, on z = 1,

D

Dt
(pz + h) = 0, on z = 0.

Surface Geostrophic equations (SQG) (Johnson, 1977; 1978.
Blumen 1978. Held et al., 1995)



SQG

Write Σ = σ|z=0 = pz |z=0 and P = p|z=0. Then

D

Dt
(Σ + h) = 0,

where
D

Dt
= ∂t +

∂(P, .)

∂(x , y)
,

and P = LΣ,

I Here L is a known linear operator L: the Dirichlet-Neumann
operator for the elliptic zero-PV interior equation.

I All dynamics is on the lower boundary and the interior flow is
passive. (J., ’77, ’78)

I This is the full nonlinear problem: solved numerically
(spectrally) here.



Linear waves

For sufficiently small disturbances the system (i.e. bottom b.c.)
linearises to

∇2p + (B−2pz)z = 0,

px = 0, at y = 0, 1,

pz = 0, at z = 1,

pzt + B2(pxhy − pyhx) = 0, on z = 0,

i.e. pzt + B2(β(x)px − β′(x)ypy ) = 0, on z = 0.

If the bottom-slope β is constant then solutions are the simplest
possible bottom-trapped shelf modes in the channel.



Slow alongshore variations

Consider waves of fixed constant frequency ω.
Let β vary slowly over a wavelength, i.e. β = β(X ), where X = εx
(ε� 1). Look for a LG (1837) solution

p(X , y , z) ∼ exp{(i/ε)

∫ X

k(X ′)dX ′ + iωt}
∞∑
j=0

εjφj(X , y , z).

Leading order, B constant, gives Rhines (1970)

φ0yy + B−2φ0zz − k2φ0 = 0,

φ0 = 0, at y = 0, 1,

φ0z = 0, at z = 1,

ωφ0z = −kB2βφ0, on z = 0.



Slowly-varying Rhines bottom-trapped modes

This gives the leading order solution

p(X , y , x) = F (X ) sin mπy coshµ(z − 1) exp{i/ε
∫ X

k(X ′)dX ′}+O(ε)

I m is the (integral) cross-shelf wavenumber (m = 1 most
important).

I µ(X ) = B(k(X )2 + m2π2)1/2 gives the (inverse of the)
vertical scale.

I F (X ) slowly varying local amplitude (determined at next order
in ε by conservation of wave energy flux, Green 1837).

I k(X ) slowly varying local along-shelf wavenumber.

I Recall the frequency ω is a fixed number.



Local dispersion relation

At this order k(X ) satisfies

ω

β(X )
= D(k(X )).

Here D(k) =
B2k

µ tanhµ
=

Bk√
k2 + m2π2 tanh(B

√
k2 + m2π2)

is a function of k alone for each mode m.

I Relates the local wavenumber, k(X ), to the local cross-shelf
slope, β(X ), parametrically.

I For B ≥ 1 (moderate stratification) the dispersion curves are
strictly monotonic increasing in k and so energy propagation
is uni-directional,

∂ω

∂k

∣∣∣∣
X

> 0.



Adiabatic transmission (Green 1837)
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ω/β(X ) = D(k) for B = 1.
Here ω = 0.5.

I As β(X ) decreases, ω/β
increases.

I Thus k(X ) increases,
i.e. waves shorten.

I Graph slope, ∂ω/∂k,
group velocity,
decreases. Waves travel
slower.

I Energy density, F ,
increases.



Bottom PV in the adiabatic transmission regime
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One turning point (Harold Jeffreys 1923)
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B = 0.1. Weak stratification.
ω = 0.14.

I I – Incident long wave.
Graph slope, ∂ω/∂k,
group velocity, positive.
Amplitude F−.

I R – Reflected short
wave. Graph slope,
∂ω/∂k , group velocity,
negative. Amplitude
F +. Returns incident
energy flux.

I T – Evanescent
transmitted wave. Zero
energy flux.

I Smoothed with Airy fn.



Linear reflection in the nonlinear equations

Quasi-barotropic flow (B=0.1, ω=0.16, A=0.01)
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Perturbation surface PV, σ from a numerical solution SQG with
nonlinear terms suppressed. (Not full SPV)



Singular absorption in the linear equations
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Return to:- ω/β(X ) = D(k)
for B = 1 but here ω=0.8.

I As β(X ) decreases, ω/β
increases.

I For β(X ) < 0.8 there is
no forward propagating
wave.

I For this stratification
there are no reflected
waves.

I Energy accumulates at
that X where the group
velocity vanishes.

I The wavelength shrinks
to zero.



Singular absorption in the linear equations

Perturbation surface PV, σ from a numerical solution of SQG with
nonlinear terms suppressed. (Not full SPV)
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Right: constant energy flux. Left: zero energy flux
B=1, ω=0.8



Time dependence – Step-wall interaction

Linear, time-dependent (J. ’85). Singularity remains.



Vertical variation – Internal Kelvin waves

Linear, vertical variation (J. ’91)



Nonlinear: Eddies in bottom PV

Full surface PV, q = σ + h from a numerical solution SQG.
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Nonlinear terms reinstated.
Closed contours of bottom PV = eddies. Single-signed.
B=1, ω=0.8, A=0.01.



Eddies in bottom PV





Singular absorption regime in nonlinear equations
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Numerical solution for SPV with nonlinear terms reinstated.
Not perturb SPV., sufficiently small? (B=1, ω=0.8)



Surface PV density and flux

I The governing equation can be written

∂q

∂t
+∇ · (qu) = 0, on z = 0,

where q = σ + h is the surface PV.
I Integrating across the shelf gives the conservation of

along-shelf SPV as

∂Q

∂t
+
∂F
∂x

= 0,

where

Q(x , t) =

∫ 1

0
q dy , F(x , t) =

∫ 1

0
uq dy .

are the cross-shelf-averaged SPV density and
cross-shelf-averaged SPV flux.

I The SPV evolution can thus be shown in a Hovmöller
diagram, plotting the flux F as a function of x and t.



Hovmöller diagram for bottom PV flux
Singular absorption
regime.
(B=1, ω=0.8,
A=0.01)
(a) linear

(b) nonlinear



Conclusion

I At sufficiently strong stratifications and shelf slopes no short
counter-propagating waves exist.

I Low frequency incoming shelf wave energy can be transmitted
through adiabatic transformation (LG).

I Higher frequency shelf waves can be transmitted as Internal
Kelvin Waves or as eddies or nonlinear waves, depending on
their amplitude and the rapidity of change of bottom slope.
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