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Circulation of the NW Med and the deep waters renewal

Mean oceanic circulation of the NWMED:
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Circulation of the NW Med and the deep waters renewal

Mean oceanic circulation of the NWMED:
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Circulation of the NW Med and the deep waters renewal

In-situ observations from Oct/2009 to Nov/2013:
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Circulation of the NW Med and the deep waters renewal

In-situ observations from Oct/2009 to Nov/2013:
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Section across the DWF zone, role of submesoscale frontal exchanges
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De�nition

Mechanism of SI:

De�nition: A �uid parcel with Potential Vorticity of opposite sign of the
Coriolis parameter (<0 in the Northern Hemisphere) is unstable to along
isopycnal perturbations.
In a 1D geostrophic framework, the Ertel's PV goes by:

q ≡ (fẑ+∇∧ u) · ∇ρ ∝ f(f + ∂xv)N
2 − (∂xb)

2 with b ≡ −gρ

ρ0
(1)

Surface forcing (through buoyancy loss or down-front winds) can extract PV by
weakening the strati�cation (N2 ↘) and enhancing density fronts ((∂xb)

2 ↗)

Once SI develops, �u-
ids move along isopy-
cnals on the vertical
(x,z) plane and it tends
to restratify the surface
layer so that PV ∼ 0
(N2 ↗ and (∂xb)

2 ↘).

Growth time : O(f−1)
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Frontal structure of the NC

Example of a Glider section across the NC in Winter

• glider deployed in winter 2011;

• crossed the front during an intense wind event
⇒ daily mean heat loss < -500 W.m2;

• bottom-reached convection (data from the mooring LION);

• The potential temperature exhibits submesoscale variability at the NC
front.

Can these vertical exchanges be the result of SI?
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PV diagnostic

Estimating the PV from gliders data:

• geostrophic currents perpendicular to the glider path are estimated from
the integration of the vertical shear (thermal wind balance: f∂zv = −∂xb)
from a �ltered density section1 to �lter out small isopycnal oscillations due
to internal waves.

• the cross-section depth-average currents (estimated by the glider
navigation) are taken as a velocity reference.

• PV = f(f + ∂xv)N
2 − (∂xb)

2 (assuming a 2D dynamics)

1gaussian running mean (σ=2km) of signi�cant width ∼ 6km
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Model con�guration

The numerical model SYMPHONIE

• 3D primitive equation hydrostatic
ocean model

• realistic con�guration of the NWMed

• horizontal resolution of 1km,
40 σ-vertical levels

• surface forcing: ARPERA reanalysis
from Sept 2010 to Dec 2011

• boundary conditions prescribed by
Mercator operational model
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PV repartition

PV at di�erent depths (20m, 50m, 100m and 200m)
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Sources of PV extraction at fronts

Surface buoyancy �ux:

SuBF =
g

ρ0

[
α

Cp
Qnet + ρ0βS(E− P)

]
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E�ect on PV when MLD ↑
Ekman buoyancy �ux � Buoyancy �ux
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Temporal Variability

Development of frontal vertical motions
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Temporal Variability
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Temporal Variability

Development of frontal vertical motions
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Temporal Variability

Development of frontal vertical motions
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Temporal Variability

Development of frontal vertical motions
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Temporal Variability

Development of frontal vertical motions
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Evaluation of the PV estimated by the glider

PV estimates by the glider method from model output
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⇒ Good general agreement on the PV.
⇒ Patches of negative PV are captured!
(despite all hypothesis behind the computation)

Work in progress:
• detailed analysis of the PV conservation equation:

∂tq = −∇ · (qU +∇b× F − (fk̂ +∇× U)Dtb) (2)

• closer look at vertical velocities at the front and quantify the impact of
submesoscale dynamics on NC heat/salt transport
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Conclusion

• Symmetric instability is a possible mechanism for vertical exchanges at
intense oceanic fronts (like in Winter in the Gulf of Lions, when the deep
convection occurs o�shore)

• Glider can estimate the Potential Vorticity at the front with an accuracy
required to capture negative PV

• The negative PV surfaces correspond to region of strong Ekman buoyancy
�ux due to down-front winds

[North-South Chlorophyll section from glider Campe during ASICSMED

deployment in Winter 2013.]

• Ekman buoyancy �ux at fronts
can be about 2 × > surface
buoyancy �ux, but its e�ect on
the PV destruction can be 10 ×
greater!

• Vertical velocities at front can be
0(100m/day)
→ consequence on phyto growth?
[Taylor and Ferrari, GRL 2011]
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LIW SCVs

Observation of outstanding LIW SCVs in the Ligurian Sea:

Bosse et al (2015): Spreading of LIW by SCVs in
the NW Mediterranean as observed with gliders,
Journal of Geophysical Research

Over about 40 Nice-Calvi section, gliders ob-
served 5 SCVs:

• depth-intensi�ed velocities (anticyclonic
SCVs, McWilliams [1985]);

• core of very well marked LIW (S ∼ 38.7
(+0.1) and T ∼ 13.8◦C (+0.4◦C)

• small radius (∼ 5km)

• (Ro ∼ 0.3 and Bu ∼ 0.3-1.3);

• peak velocity (∼ 8cm/s) at intermediate
depths (∼ 400m).

• life-time > 6 months.
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LIW SCVs

Process of formation: (D'Asaro [1988])

Non-conservative processes within the bottom boundary layer
+ �ow detachment (curvature small enough at NW headland).
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The formation of these SCVs seems to be closely linked to the circulation of AW at the surface
(upwelling with southward surface �ow = necessary condition).



Introduction Symmetric instability Numerical modelling of the NWMED Conclusion Appendix: SCVs

SCVs formed by Deep mixing

The breakup of the mixed patch into vortical structures

Bosse et al (in prep): Multi-platform observation of submesoscale vortices formed by deep
vertical mixing in the northwestern Mediterranean Sea

Cyclonic cones ↑
From Send and Marshall, JPO [1995]

Anticyclonic SCVs
From McWilliams, Rev. Geophys. [1985] →

Modis data
April 12 to 15, 2013)

Motivation:
. Characterize these vortices from observations
And discuss their role for...
. ... the spreading of convected waters?
. ... the preconditioning of the ocean to vertical
mixing?

. (... the biogeochemical cycles?)
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SCVs formed by Deep mixing
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19 anticyclones in total:

type WIW Mode nWMDW
# eddies 4 5 9
R [km] 5.3 6.9 7.8
V [cm/s] 17.9 13.0 > 11.8
Ro ≡ 2V/fRr -0.65 -0.38 <-0.32
H 500 >800 >1500
N/f 2.6 3.6 2.7
Bu ≡ [NH/fR]2 2.6 >0.22 >0.23

Ro = 0(1) ⇒ non-linear eddies
Bu = 0(1) ⇒ R = O(deformation radius)
Observed all year long ⇒ lifetime 0(1 year)
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SCVs formed by Deep mixing
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25 cyclones in total:

type depth-int. surface-int.
# eddies 14 11
R [km] 6.1 8.0
V [cm/s] 8.8 16.1
Ro +0.32 +0.39
H 500�1800 200
N/f 4.1 29
Bu 0.37 0.75

Ro = 0(1) ⇒ non-linear eddies
Bu = 0(1) ⇒ R = O(deformation radius)

. Cyclones are found to be numerous and also
long-lived (at least for few months)

. Surface-intensi�ed cyclones have a signi�cant
barotropic component: 0(5-10 cm/s) @ 1000 m

. Peculiar density structure of depth-intensi�ed
cyclones characterized by a pinching of isopyc-
nals at depths
→ Formation process to be investigated...

. Some of them results from dense waters cas-
cading from the Gulf of Lions shelf

Thank you for your attention!
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