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Part 1

Information Fusion 
with Belief Functions
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They do not account for partial/incomplete knowledge. 

They deal generally with information drawn from generic knowledge 
based either on population of items, laws of physics, common sense, ...

They capture only one aspect of the uncertainty 
(the randomness, i.e. the variability through repeated measurements).

They can’t distinguish between uncertainty due to variability, and 
uncertainty due to the incompletness/lack of knowledge (epistemic 
uncertainty).

Variability is related with precisely observed random observations

Incompletness/non specificity is related with missing/partial information

Limitations of probabilities
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Limitation of uniform prior pdf to model the ignorance
Consider a random variable W taking its value w in [1,2], and the 
random variable V=1/W which obviously takes its value v=1/w in [0.5,1].

To model ignorance of value of W, it is usually assumed uniform prior pdf.

By doing so, however we get Non-uniform prior pdf for V=1/W.

which is not satisfactory because, we are a priori fully ignorant on 
the true value of W as well as of 1/W !!! So the choice of uniform pdf 
does not model properly our prior full ignorance of values w and v.

Why uniform pdf is not satisfactory
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Beliefs often are related with singular event and are not necessarily 
related with statistical data and generic knowledge, but with singular 
evidence. BF are well adapted for modeling partial knowledge.

Paradigm shift with Belief Functions (BF)

Frame of discernment (FoD)  

4

La théorie de Dempster-Shafer (1976)

• Cadre de discernement : ensemble discret fini d’hypothèses
exclusives et exhaustives (closed-world approach)

� = {�i, i = 1, . . . , n}

• Power Set : Ensemble des parties de �

P(�) � 2� |P(�)| = 2|�|

• Exemple : � = {�1, �2, �3}⇥ 8 élements dans P(�)

2� = {⇤, �1, �2, �3, �1 ⇧ �2, �1 ⇧ �3, �2 ⇧ �3, �1 ⇧ �2 ⇧ �3}

Shafer’s model  Close world assumption with exclusivity of elements

Any subset A of the FoD corresponds to the proposition
P�(A) � The true value of � is in a subset A of �.

4
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• Cadre de discernement : ensemble discret fini d’hypothèses
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P(�) � 2� |P(�)| = 2|�|
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Power-set 

There is equivalence between operators on sets and logical operators

Frame of discernment and Shafers’ model
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5

Le modèle de Shafer

Θ = {θ1, θ2, θ3}

S1(A) corresponds to DSmC rule for k independent sources based onMf (�); S2(A)
represents the mass of all relatively and absolutely empty sets which is transferred to

the total or relative ignorances associated with non existential constraints (if any, like in

some dynamic problems); S3(A) transfers the sum of relatively empty sets directly onto
the canonical disjunctive form of non-empty sets. DSmH generalizes DSmC and is not

equivalent to Dempster’s rule. It works for any models (the free DSm model, Shafer’s

model or any other hybrid models) when manipulating precise generalized (or eventually

classical) basic belief functions.

c(X) = conjunctive normal form of X

Ex: If X = (A  B) ⌦ [C ⌦ (A  C)]
then c(X) = (A  B) ⌦ C

; , {⌃,;M} = {⌃, set of propositions forced to be empty inM}

;M = set of propositions forced to be empty inM

� = {�1, �2, �3}⇥

6. Fusion of imprecise beliefs

Since it difficult to have sources/human experts providing precise beliefs, a more flexible

theory dealing with imprecise information is necessary. So we extended DSmT for deal-

ing with admissible imprecise generalized basic belief mI(.) defined as real subunitary
intervals of [0, 1], or even more general as real subunitary sets (not necessarily intervals).
These sets can be unions of (closed, open, or half-open/half-closed) intervals and/or

scalars all in [0, 1]. An imprecise belief assignment mI(.) over D� is said admissible if

and only if there exists for every X ⇤ D� at least one real number m(X) ⇤ mI(X)
such that

�
X�D⇥ m(X) = 1. The following simple operators on sets (addition � and

multiplication �) are necessary [8] for the fusion of imprecise beliefs:

X1 � X2 , {x | x = x1 + x2, x1 ⇤ X1, x2 ⇤ X2}

X1 � X2 , {x | x = x1 · x2, x1 ⇤ X1, x2 ⇤ X2}

From these operators, one generalizes DSmC from scalars to sets as follows [8] (Chap.

6): ⇧A ⌅= ⌃ ⇤ D�,

mI
Mf (�)(A) =

⇥

X1,X2,...,Xk�D⇥

(X1\X2\...\Xk)=A

⇤

i=1,...,k

mI
i (Xi) (8)

|2�| = 23 = 8

Impossibility partial ignorances full ignorance

4
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Basic belief assignment (BBA)
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Abstract – This paper presents in detail the generalized pignistic transformation (GPT) succinctly developed in the Dezert-Smarandache

Theory (DSmT) framework as a tool for decision process. The GPT allows to provide a subjective probability measure from any gen-

eralized basic belief assignment given by any corpus of evidence. We mainly focus our presentation on the 3D case and provide the
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1 Introduction

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [m1 ⊕ m2] ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m1 ⊕ [m2 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m2 ⊕ [m1 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

In the recent theory of plausible and paradoxical reasoning (DSmT) developed by Dezert and Smarandache [?, ?], a

new generalized pignistic transformation has been proposed to construct a subjective probability measure P{.} from any
generalized basic belief assignment m(.) defined over the hyper-power set DΘ. In reference [?], a simple example of

such generalized pignistic transformation has been presented only for the case n = |Θ| = 2. In this paper, we present the
complete derivation of this pignistic transformation for the case n = |Θ| = 3 and we generalize the result. Before intro-
ducing the GPT, it is however necessary to briefly present the DSmT [?, ?, ?, ?, ?, ?] with respect to the Dempster-Shafer

Theory (DST) [?].

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [(m1 ⊕ m2) ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m1 ⊕ (m2 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m2 ⊕ (m1 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

m(.) : 2Θ → [0, 1]

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1

Bel(A) =
∑

B∈2Θ,B⊆A

m(B)

Pl(A) =
∑

B∈2Θ,B∩A $=∅

m(B) = 1 − Bel(Ā)

m(∅) = 0

∗Partial support by the COST action 274 TARSKI acknowledged.

Focal element A:  iff m(A)>0
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Vacuous BBA

Θ = {θ1, θ2, θ3} ⇒

In general, 0 ≤ Bel(A) ≤ Pl(A) ≤ 1

∀A $= Θ, mv(A) = 0 andmv(Θ) = 1

The development of the DSmT [8] arises from the necessity to overcome the inher-

ent limitations of the DST [7] which are closely related with the acceptance of Shafer’s

model (i.e. working with an homogeneous1 frame of discernment Θ defined as a finite

set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third middle excluded
principle, and Dempster’s rule for the combination of independent sources of evidence.

Limitations of DST are well reported in literature [17,13] and several alternative rules

to Dempster’s rule of combination can be found in [1,16,3,5,6,8]. DSmT provides a new

mathematical framework for information fusion which appears less restrictive and more

general than the basis and constraints of DST. The basis of DSmT is the refutation of the

principle of the third excluded middle and Shafer’s model in general, since for a wide

class of fusion problems the hypotheses one has to deal with, can have different intrinsic

nature and also appear only vague and imprecise in such a way that precise refinement

is just impossible to obtain in reality so that the exclusive elements θi cannot be prop-

erly identified and defined. Many problems involving fuzzy/vague continuous and rela-

tive2 concepts described in natural language with different semantic contents and hav-

ing no absolute interpretation enter in this category. We claim that in general, the nega-

tion/complement is not accessible, but DSmT offers the possibility to deal with negation

and Shafer’s model as well. When the model of the problem fits with these constraints

(negation follows from exclusivity constraints), we include them in the frame and then

one forms the hyper-power set in the normal way. Thus DSmT deals naturally with nega-

tions/complements when necessary. DSmT starts with the notion of free DSm model and

considers Θ only as a frame of exhaustive elements which can potentially overlap and

have different intrinsic semantic natures and which also can change with time with new

information and evidences received on the model itself. DSmT offers a flexibility on the

structure of the model one has to deal with. When the free DSm model holds, the con-

junctive consensus is performed. If the free model does not fit the reality because it is

known that some subsets of Θ contain elements truly exclusive but also possibly truly

non existing at all at a given time (in dynamic3 fusion), new fusion rules must be per-

formed to take into account these integrity constraints. The constraints can be explicitly

introduced into the free DSm model to fit it adequately with our current knowledge of

the reality; we actually construct a hybrid DSm model on which the combination will

be efficiently performed. Shafer’s model, which is the basis of DST, corresponds to a

1Although the homogeneity of Θ is not explicitly mentioned in the DST, it is a strong implicit assumption

inherent to the Shafer’s model. When working with DST, one implicitly assumes that all finite and exclusive

elements of Θ have somehow the same semantic nature, otherwise the complement defined over the power-set

becomes just a non-sense. The Shafer’s model cannot deal directly with non-homogeneous elements (carrying

different semantics) of Θ. This property however is necessary in many applications where the information
given by the sources can’t be expressed with same semantic due to the potentially different intrinsic nature of

information carried by the sources/experts/sensors.
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources

of evidences involved in the fusion process.
3i.e. when the frame Θ and/or the modelM is changing with time.
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France U.S.A. Czech Republic

Jean.Dezert@onera.fr smarand@unm.edu milan.daniel@cs.cas.cz

Abstract – This paper presents in detail the generalized pignistic transformation (GPT) succinctly developed in the Dezert-Smarandache

Theory (DSmT) framework as a tool for decision process. The GPT allows to provide a subjective probability measure from any gen-

eralized basic belief assignment given by any corpus of evidence. We mainly focus our presentation on the 3D case and provide the

complete result obtained by the GPT and its validation drawn from the probability theory.

Keywords: Dezert-Smarandache Theory (DSmT), Dempster-Shafer Theory,pignistic transformation, subjective probability, pignistic

probability, plausible and paradoxical reasoning, DSm cardinality, hybrid model, data fusion, decision-making, conflict, processing.

1 Introduction

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [m1 ⊕ m2] ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m1 ⊕ [m2 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m2 ⊕ [m1 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

In the recent theory of plausible and paradoxical reasoning (DSmT) developed by Dezert and Smarandache [?, ?], a

new generalized pignistic transformation has been proposed to construct a subjective probability measure P{.} from any
generalized basic belief assignment m(.) defined over the hyper-power set DΘ. In reference [?], a simple example of

such generalized pignistic transformation has been presented only for the case n = |Θ| = 2. In this paper, we present the
complete derivation of this pignistic transformation for the case n = |Θ| = 3 and we generalize the result. Before intro-
ducing the GPT, it is however necessary to briefly present the DSmT [?, ?, ?, ?, ?, ?] with respect to the Dempster-Shafer

Theory (DST) [?].

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [(m1 ⊕ m2) ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m1 ⊕ (m2 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m2 ⊕ (m1 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

m(.) : 2Θ → [0, 1]

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1

Bel(A) =
∑

B∈2Θ,B⊆A

m(B)

Pl(A) =
∑

B∈2Θ,B∩A $=∅

m(B) = 1 − Bel(Ā)
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Credibility

«Bayesian» BBA     Focal elements are singletons

Total mass of subsets implying A

Plausibility
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Total mass of subsets intersecting A
Θ = {θ1, θ2, θ3} ⇒

In general, 0 ≤ Bel(A) ≤ Pl(A) ≤ 1

∀A $= Θ, mv(A) = 0 andmv(Θ) = 1
The development of the DSmT [8] arises from the necessity to overcome the inher-

ent limitations of the DST [7] which are closely related with the acceptance of Shafer’s

model (i.e. working with an homogeneous1 frame of discernment Θ defined as a finite

set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third middle excluded
principle, and Dempster’s rule for the combination of independent sources of evidence.

Limitations of DST are well reported in literature [17,13] and several alternative rules

to Dempster’s rule of combination can be found in [1,16,3,5,6,8]. DSmT provides a new

mathematical framework for information fusion which appears less restrictive and more

general than the basis and constraints of DST. The basis of DSmT is the refutation of the

principle of the third excluded middle and Shafer’s model in general, since for a wide

class of fusion problems the hypotheses one has to deal with, can have different intrinsic

nature and also appear only vague and imprecise in such a way that precise refinement

is just impossible to obtain in reality so that the exclusive elements θi cannot be prop-

erly identified and defined. Many problems involving fuzzy/vague continuous and rela-

tive2 concepts described in natural language with different semantic contents and hav-

ing no absolute interpretation enter in this category. We claim that in general, the nega-

tion/complement is not accessible, but DSmT offers the possibility to deal with negation

and Shafer’s model as well. When the model of the problem fits with these constraints

(negation follows from exclusivity constraints), we include them in the frame and then

one forms the hyper-power set in the normal way. Thus DSmT deals naturally with nega-

tions/complements when necessary. DSmT starts with the notion of free DSm model and

considers Θ only as a frame of exhaustive elements which can potentially overlap and

have different intrinsic semantic natures and which also can change with time with new

information and evidences received on the model itself. DSmT offers a flexibility on the

structure of the model one has to deal with. When the free DSm model holds, the con-

junctive consensus is performed. If the free model does not fit the reality because it is

known that some subsets of Θ contain elements truly exclusive but also possibly truly

non existing at all at a given time (in dynamic3 fusion), new fusion rules must be per-

formed to take into account these integrity constraints. The constraints can be explicitly

introduced into the free DSm model to fit it adequately with our current knowledge of

the reality; we actually construct a hybrid DSm model on which the combination will

be efficiently performed. Shafer’s model, which is the basis of DST, corresponds to a

very specific hybrid DSm (and homogeneous) model including all possible exclusivity

1Although the homogeneity of Θ is not explicitly mentioned in the DST, it is a strong implicit assumption

inherent to the Shafer’s model. When working with DST, one implicitly assumes that all finite and exclusive

elements of Θ have somehow the same semantic nature, otherwise the complement defined over the power-set

becomes just a non-sense. The Shafer’s model cannot deal directly with non-homogeneous elements (carrying

different semantics) of Θ. This property however is necessary in many applications where the information
given by the sources can’t be expressed with same semantic due to the potentially different intrinsic nature of

information carried by the sources/experts/sensors.
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources

of evidences involved in the fusion process.
3i.e. when the frame Θ and/or the modelM is changing with time.

 Bel(A)=Pl(A)=P(A)

 Belief functions

[G. Shafer, A mathematical theory of evidence, 1976.]
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1. Introduction

�
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m(�)

⇧
�

m�(A) = � · m(A) �A ⌥= �
m�(�) = (1� �) + � · m(�)

⇥1 . . . ⇥n u1 . . . up

Source 1 ms1(⇥1) . . . ms1(⇥n) ms1(u1) . . . ms1(up)
Source 2 ms2(⇥1) . . . ms2(⇥n) ms2(u1) . . . ms2(up)
...
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Source k msk(⇥1) . . . msk(⇥n) msk(u1) . . . msk(up)

um,m = 1, . . . , p are disjunctions of elements ⇥i, (i ⌃ {1, . . . , n} of the frame �.

m(ui) = [ms1 ⇤ms2 ⇤ . . .⇤msn ](ui) = 1

� = {⇥1, . . . , ⇥n}, n ⌅ 2
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To be used if one has a good estimation of the reliability factor of the 
source based on experiments and ground truth.

Other discounting techniques

- Contextual discounting [Denœux et al. 2005, 2006]
- Importance discounting

Shafer’s discounting

[Smarandache F., Dezert J., Tacnet J.-M., Fusion of sources of evidence with different 
importances and reliabilities, Proc. of Fusion 2010.]



11

On the validity of
DST

Brief History

New facts and
our motivation

Basics of DST
Preliminary remarks
on two Shafer’s
statements

Belief functions

Dempster-Shafer
rule

Two simple examples

On the validity of
DST
Important result put
in light

A very emblematic
example

Discussion

Conclusions

Basics of DST
Dempster-Shafer rule

Definition: To combine two distinct and equi-reliable sources of evidences
m1(.) and m2(.) defined on the same frame ⇥, Shafer proposed Dempster’s
rule defined by m

DS

(;) = 0, and 8X 2 2⇥ \ {;} by

m

DS

(X) = [m1 � m2](X) =
m12(X)

1 � K12
(3)

with m12(X) ,
X

X1,X222⇥

X1\X2=X

m1(X1)m2(X2)

| {z }
Conjunctive fusion

and K12 , m12(;) =
X

X1,X222⇥

X1\X2=;

m1(X1)m2(X2)

| {z }
Conflict level

DS rule = normalized conjunctive fusion rule

Properties: extension to n > 2 sources; associativity; commutativity;
neutrality of vacuous bba [m � m

v

](.) = m(.)

Conditioning: m(.) combined with m

Z

(.) focused on Z (i.e. m

Z

(Z ) = 1) with
DS rule yields m(X |Z ) = [m � m

Z

](X) = [m
Z

� m](X) and
Pl(X |Z ) = Pl(X \ Z )/Pl(Z ) (similar to Conditioning rule for probas).

Drawbacks: Counter-intutitive and unexpected behaviors in some cases )
validity of DS rule has become very questionable over the years ... at least
for highly conflicting cases.
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and
∀X "= ∅ ∈ 2Θ

mDS(X) !
m12...s(X)

1−K12...s
(37)

where the conjunctive agreement on X is given by:

m12...s(X) !
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=X

m1(X1)m2(X2) . . .ms(Xs) (38)

and where the global conflict is given by:

K12...s !
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=∅

m1(X1)m2(X2) . . .ms(Xs) (39)

When K12...s = 1, the s sources are in total conflict and their combination cannot be computed with DS rule because Eq. (37) is
mathematically not defined due to 0/0 indeterminacy [4]. DS rule is commutative and associative which makes it very attractive
from engineering implementation standpoint.

It has been proved in [4] that the vacuous bbamv(.) is a neutral element for DS rule because [m⊕mv](.) = [mv⊕m](.) = m(.)
for any bba m(.) defined on 2Θ. This property looks reasonable since a total ignorant source should not impact the fusion result
because it brings no information that can be helpful for the discrimination between the elements of the power set 2Θ.

IV. ANALYSIS OF COMPATIBILITY OF DEMPSTER’S RULE WITH BAYES RULE

To analyze the compatibility of Dempster’s rule with Bayes rule, we need to work in the probabilistic framework because
Bayes fusion rule has been developed only in this theoretical framework. So in the sequel, we will manipulate only probability
mass functions (pmfs), related with Bayesian bba’s in the Belief Function framework. This perfectly justifies the restriction of
singleton bba as a prior bba since we want to manipulate prior probabilities to make a fair comparison of results provided by
both rules. If Dempster’s rule is a true (consistent) generalization of Bayes fusion rule, it must provide same results as Bayes
rule when combining Bayesian bba’s, otherwise Dempster’s rule cannot be fairly claimed to be a generalization of Bayes fusion
rule. In this section, we analyze the real (partial or total) compatibility of Dempster’s rule with Bayes fusion rule. Two important
cases must be analyzed depending on the nature of the prior information P (X) one has in hands for performing the fusion of
the sources. These sources to combine will be characterized by the following Bayesian bba’s:









m1(.) ! {m1(θi) = P (X = xi|Z1), i = 1, 2, . . . , N}
...

...
...

ms(.) ! {ms(θi) = P (X = xi|Zs), i = 1, 2, . . . , N}
(40)

The prior information is characterized by a given bba denoted as m0(.) that can be defined either on 2Θ, or only on Θ if we want
to deal for the needs of our analysis with a Bayesian prior. In the latter case, if m0(.) ! {m0(θi) = P (X = xi), i = 1, 2, . . . , N}
then m0(.) plays the same role as the prior pmf P (X) in the probabilistic framework.

When considering a non vacuous prior m0(.) "= mv(.), we denote Dempster’s combination of s sources symbolically as:

mDS(.) = DS(m1(.), . . . ,ms(.);m0(.))

When the prior bba is vacuous m0(.) = mv(.) then m0(.) has no impact on Dempster’s fusion result, and so we denote
symbolically Dempster’s rule as:

mDS(.) = DS(m1(.), . . . ,ms(.);mv(.))

= DS(m1(.), . . . ,ms(.))

A. Case 1: Uniform Bayesian prior

It is important to note that Dempster’s fusion formula proposed by Shafer in [4] and recalled in Eq. (37) makes no real
distinction between the nature of sources to combine (if they are posterior or prior information). In fact, the formula (37) reduces
exactly to Bayes rule given in Eq. (27) if the bba’s to combine are Bayesian and if the prior information is either uniform or
vacuous. Stated otherwise the following functional equality holds

DS(m1(.), . . . ,ms(.);m0(.)) ≡
Bayes(P (X |Z1), . . . , P (X |Zs);P (X)) (41)

A. Belief functions

Let Θ be a frame of discernment of a problem under consideration. More precisely, the set

Θ = {θ1, θ2, . . . , θN}

consists of a list of N exhaustive and exclusive elements θi, i = 1, 2, . . . , N . Each θi represents a possible state related to
the problem we want to solve. The exhaustivity and exclusivity of elements of Θ is referred as Shafer’s model of the frame Θ.
A basic belief assignment (bba), also called a belief mass function,

m(.) : 2Θ → [0, 1]

is a mapping from the power set of Θ (i.e. the set of subsets of Θ), denoted 2Θ, to [0, 1], that verifies the following conditions
[4]:

m(∅) = 0 and
∑

X∈2Θ

m(X) = 1 (35)

The quantity m(X) represents the mass of belief exactly committed to X . An element X ∈ 2Θ is called a focal element if
and only if m(X) > 0. The set F(m) ! {X ∈ 2Θ|m(X) > 0} of all focal elements of a bba m(.) is called the core of the
bba. A bba m(.) is said Bayesian if its focal elements are singletons of 2Θ. The vacuous bba characterizing the total ignorance
denoted4 θ1 ∪ θ2 ∪ . . . ∪ θN is defined by

mv(.) : 2Θ → [0; 1] such that

mv(X) = 0 if X %= Θ, and mv(θ1 ∪ θ2 ∪ . . . ∪ θN ) = 1

From any bba m(.), the belief function Bel(.) and the plausibility function Pl(.) are defined for ∀X ∈ 2Θ as:
{

Bel(X) =
∑

Y ∈2Θ|Y⊆X m(Y )

Pl(X) =
∑

Y ∈2Θ|X∩Y $=∅ m(Y )
(36)

Bel(X) represents the whole mass of belief that comes from all subsets of Θ included in X . It is interpreted as the lower
bound of the probability of X , i.e. Pmin(X).

Bel(.) is subadditive since
∑

θi∈Θ Bel(θi) ≤ 1.

Pl(X) represents the whole mass of belief that comes from all subsets of Θ compatible with X (i.e., those intersecting X).
Pl(X) is interpreted as the upper bound of the probability of X , i.e. Pmax(X).

Pl(.) is superadditive since
∑

θi∈Θ Pl(θi) ≥ 1.

Bel(X) and Pl(X) are classically seen [4] as lower and upper bounds of an unknown probability P (.), and one has the
following inequality satisfied

∀X ∈ 2Θ, Bel(X) ≤ P (X) ≤ Pl(X)

. The belief function Bel(.) (and the plausibility function Pl(.)) built from any Bayesian bba m(.) can be interpreted as a
(subjective) conditional probability measure provided by a given source of evidence, because if the bba m(.) is Bayesian the
following equality always holds [4]: Bel(X) = Pl(X) = P (X).

B. Dempster’s rule of combination

Dempster’s rule of combination, denoted DS rule5 is a mathematical operation, represented symbolically by ⊕, which
corresponds to the normalized conjunctive fusion rule. Based on Shafer’s model of Θ, the combination of s > 1 independent
and distinct sources of evidences characterized by their bba m1(.), . . . , ms(.) related to the same frame of discernment Θ is
denoted mDS(.) = [m1 ⊕ . . .⊕ms](.). The quantity mDS(.) is defined mathematically as follows:

mDS(∅) ! 0

4The set {θ1, θ2, . . . , θN} and the complete ignorance θ1 ∪ θ2 ∪ . . . ∪ θN are both denoted Θ in DST.
5We denote it DS rule because it has been proposed historically by Dempster [2], [3], and widely promoted by Shafer in the development of DST [4].

Combination of 2 sources of evidence

DS rule = Normalized conjunctive rule

Dempster’s rule of combinationOn the validity of
DST

Brief History

New facts and
our motivation

Basics of DST
Preliminary remarks
on two Shafer’s
statements

Belief functions

Dempster-Shafer
rule

Two simple examples

On the validity of
DST
Important result put
in light

A very emblematic
example

Discussion

Conclusions

Basics of DST
Dempster-Shafer rule

Definition: To combine two distinct and equi-reliable sources of evidences
m1(.) and m2(.) defined on the same frame ⇥, Shafer proposed Dempster’s
rule defined by m

DS

(;) = 0, and 8X 2 2⇥ \ {;} by
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DS
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m12(X)
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(3)
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X
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Conjunctive fusion

and K12 , m12(;) =
X

X1,X222⇥

X1\X2=;

m1(X1)m2(X2)

| {z }
Conflict level

DS rule = normalized conjunctive fusion rule

Properties: extension to n > 2 sources; associativity; commutativity;
neutrality of vacuous bba [m � m

v

](.) = m(.)

Conditioning: m(.) combined with m

Z

(.) focused on Z (i.e. m

Z

(Z ) = 1) with
DS rule yields m(X |Z ) = [m � m

Z

](X) = [m
Z

� m](X) and
Pl(X |Z ) = Pl(X \ Z )/Pl(Z ) (similar to Conditioning rule for probas).

Drawbacks: Counter-intutitive and unexpected behaviors in some cases )
validity of DS rule has become very questionable over the years ... at least
for highly conflicting cases.

[G. Shafer, A mathematical theory of evidence, 1976.]
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Drawbacks: Counter-intutitive and unexpected behaviors in some cases )
validity of DS rule has become very questionable over the years ... at least
for highly conflicting cases.
Because of this, DS rule has often been wrongly interpreted as a 
generalization of Bayes rule. See the following papers

Because of its properties, DS rule is very appealing.

Properties of DS rule and conditioning

[J. Heendeni et al., A Generalization of Bayesian Inference in the
Dempster-Shafer Belief Theoretic Framework, in Proc. Fusion 2016.]

[A. Brodzik, R. Enders, A case of combination of evidence in the Dempster-Shafer theory 
inconsistent with evaluation of probabilities, 2011.]
https://arxiv.org/pdf/1107.0082.pdf

https://arxiv.org/pdf/1107.0082.pdf
https://arxiv.org/pdf/1107.0082.pdf
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DS rule is mathematically not defined when conlict is total (K=1).

DS rule doesn’t behave well not only in high conflicting case 
[Zadeh 1979], but even in low conflicting case.

Drawbacks of DS rule

[Dezert J., Tchamova A., Han D., Tacnet J.-M., Why Dempster’s fusion rule is not a 
generalization of Bayes fusion rule, Proc. of Fusion 2013.]

[Dezert J., Tchamova A., On the validity of Dempster's fusion rule and its interpretation as 
a generalization of Bayesian fusion rule, Int. J. of Intelligent Systems, Vol. 29 (3), 2014.]

[Dezert J., Wang P., Tchamova A., On The Validity of Dempster-Shafer Theory, 
Proc. of  Fusion 2012.]

DS rule is not a generalization of Bayes rule because it is 
incompatible with Bayes rule when the prior is not uniform, 
nor vacuous.
[A. Brodzik, R. Enders, A case of combination of evidence in the Dempster-Shafer theory 
inconsistent with evaluation of probabilities, 2011.]
https://arxiv.org/pdf/1107.0082.pdf

https://arxiv.org/pdf/1107.0082.pdf
https://arxiv.org/pdf/1107.0082.pdf
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PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m1(θ1) = 1 − e1 m1(θ2) = 0 m1(θ3) = e1

m2(θ1) = 0 m2(θ2) = 1 − e2 m2(θ3) = e2

Let’s consider x an hidden/unknown (scalar or vector-valued) quantity called parameter1 and some obser-
vation z of x. This means that z is a function (not necessarily known) of x, i.e. z = h(x). An estimator is a
function of z which transforms the observation z into an estimate x̂(z) of x in some sense. Closer x̂(z) is to
x for a given distance measure, better is the estimator. For notation convenience, we will use x̂ instead x̂(z)
when no confusion is possible. According [?], an optimal estimator is a computational algorithm that processes
observations to yield an estimate of a variable of interest that minimizes a certain error criterion. In tracking
applications, the parameter x is usually time-varying and it corresponds to the state of a dynamic system under
interest. The estimation process uses knowledge or modeling about the evolution the state of the dynamic
system and the probabilistic characterization of the random factors and the prior information. The estimation
error x̃ corresponding to x̂ is

x̃ ! x − x̂

Models for estimation of x [?]:

• Bayesian approach: The unknown parameter x to estimate from observation is considered as a random
variable with a given prior density function p(x). With this model, a realization of x according to p(x) is
assumed to have occured and this value stays constant during the observation process. We would like for
each measurement to have an estimate that converges in some sense to the corresponding realization of
x, and this should hold for all x.

1For simplicity, we assume x being time invariant.

1

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B *= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

DS fusion result

DS rule provides same result whatever the positive values of e1 and e2 are !!! 
DS is not numerically robust to slight input changes. If we take very small non 
zero values instead of zeros, we get:

k12 = (1� e1)(1� e2) + (1� e1)e2 + e1(1� e2) = 1� e1e2

If e1 = 0.1 and e2 = 0.1, then k12 = 1� 0.01 = 0.99 (high conf.)

High conflict case

Bayesian BBAs

Zadeh’s example (1979)

m(✓1) = m(✓2) ⇡ 0.5 m(✓3) ⇡ 0

[J. Dezert, A. Tchamova, D. Han, A Real Z-box Experiment for Testing Zadeh's 
Example, in Proc. of Fusion 2015.]

⇥ = {✓1 = Tumor, ✓2 = Meningitis, ✓3 = Concussion} Shafer’s model
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Low conflict case

Bayesian BBAs

Modified Zadeh’s example

Shafer’s model
⇥ = {✓1 = Tumor, ✓2 = Meningitis, ✓3 = Concussion}

m1(✓3) = 0
m2(✓3) = 0.01

m1(✓2) = 0.01

m2(✓2) = 0
m1(✓1) = 0.99
m2(✓1) = 0.99

k12 = (0.99 · 0.01) + (0.01 · 0.99) + (0.01 · 0.01) = 0.0199

One gets complete support (i.e. certainty) for the diagnosis of a brain tumor !!!

This result is counter-intuitive since there is not a full agreement (there is a conflict) 
between the two sources, and the existence of non-zero probas for other diagnoses 
implies less than complete support. So we should expect in this case to get by the fusion 

DS fusion result m(✓3) =
m1(✓1)m2(✓1)

1� k12
=

0.99 · 0.99
1� 0.0199

=
0.9801

0.9801
= 1m(✓1)

m(✓1) < 1
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On the validity of DST
A very emblematic example

1 Emblematic example1: Θ = {A,B,C} and two informative sources.
Focal elem. \ bba’s m1(.) != mv (.) m2(.) != mv (.)

A a 0
A ∪ B 1 − a b1
C 0 1 − b1 − b2

A ∪ B ∪ C 0 b2

a ∈ [0, 1], and b1, b2 > 0
such that b1 + b2 ∈ [0,1]

2 Conjunctive fusion and conflict:
m12(A) = m1(A)m2(A ∪ B) +m1(A)m2(A ∪ B ∪ C) = a(b1 + b2)
m12(A ∪ B) = m1(A ∪ B)m2(A ∪ B) +m1(A ∪ B)m2(A ∪ B ∪ C)

= (1− a)(b1 + b2)
K12 = m12(∅) = m1(A)m2(C) +m1(A ∪ B)m2(C)

= a(1− b1 − b2) + (1− a)(1 − b1 − b2)
= 1− b1 − b2

(conflict can take any low or high value) (4)
3 Dempster-Shafer fusion: Normalization by 1− K12 = b1 + b2

mDS(A) =
m12(A)
1− K12

=
a(b1 + b2)
b1 + b2

= a = m1(A)

mDS(A ∪ B) =
m12(A ∪ B)
1− K12

=
(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪ B)

mDS(.) = [m1 ⊕m2](.) = m1(.) even if m2(.) "= mv (.)

Conjunctive fusion

m12(A [B) = m1(A [B)m2(A [B) +m1(A [B)m2(A [B [ C) = (1� a)(b1 + b2)

m12(A) = m1(A)m2(A [B) +m1(A)m2(A [B [ C) = a(b1 + b2)

Conflicting mass

chosen as low as we want.

 Dezert-Tchamova example (2011)

Low conflict case

114 CHAPTER 5. COUNTER-EXAMPLES TO DEMPSTER’S RULE OF COMBINATION

5.3.2 Generalization with Θ = {θ1, θ2, θ3}

Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, θ2, θ3}, have two experts (independent sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1 − ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1 − ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.



1 − ε1 0 ε1

0 1 − ε2 ε2





• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1 − ε1) · 0 + 0 · (1 − ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values for ε1, ε2 are,

Dempster’s rule of combination provides always the same result (one) which is abnormal. The only

acceptable and correct result obtained by Dempster’s rule is really obtained only in the trivial case

when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets m(θ3) = ε1ε2, m(θ1 ∩ θ2) =

(1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2, m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which

appears more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one gets m(θ3) = ε1ε2,

m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∪ θ3) = (1 − ε1)ε2, m(θ2 ∪ θ3) = (1 − ε2)ε1 and the others are

zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2 and m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm rule based on the same

Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is

normal.

5.3.3 Generalization with Θ = {θ1, θ2, θ3, θ4}

Let’s consider 0 < ε1, ε2, ε3 < 1 be three very tiny positive numbers, the frame of discernment be

Θ = {θ1, θ2, θ3, θ4}, have two experts giving the mass matrix



1 − ε1 − ε2 0 ε1 ε2

0 1 − ε3 0 ε3




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On the validity of DST
A very emblematic example

1 Emblematic example1: Θ = {A,B,C} and two informative sources.
Focal elem. \ bba’s m1(.) != mv (.) m2(.) != mv (.)

A a 0
A ∪ B 1 − a b1
C 0 1 − b1 − b2

A ∪ B ∪ C 0 b2

a ∈ [0, 1], and b1, b2 > 0
such that b1 + b2 ∈ [0,1]

2 Conjunctive fusion and conflict:
m12(A) = m1(A)m2(A ∪ B) +m1(A)m2(A ∪ B ∪ C) = a(b1 + b2)
m12(A ∪ B) = m1(A ∪ B)m2(A ∪ B) +m1(A ∪ B)m2(A ∪ B ∪ C)

= (1− a)(b1 + b2)
K12 = m12(∅) = m1(A)m2(C) +m1(A ∪ B)m2(C) (4)

3 Dempster-Shafer fusion: Normalization by 1− K12 = b1 + b2

mDS(A) =
m12(A)
1− K12

=
a(b1 + b2)
b1 + b2

= a = m1(A)

mDS(A ∪ B) =
m12(A ∪ B)
1− K12

=
(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪ B)

mDS(.) = [m1 ⊕m2](.) = m1(.) even if m2(.) "= mv (.)

1Many examples like this one can be generated [9]

Shafer’s model

[Dezert J., Wang P., Tchamova A., On The Validity of Dempster-Shafer Theory, 
in Proc. of  Fusion 2012.]
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On the validity of DST
A very emblematic example

1 Emblematic example1: Θ = {A,B,C} and two informative sources.
Focal elem. \ bba’s m1(.) != mv (.) m2(.) != mv (.)

A a 0
A ∪ B 1 − a b1
C 0 1 − b1 − b2

A ∪ B ∪ C 0 b2

a ∈ [0, 1], and b1, b2 > 0
such that b1 + b2 ∈ [0,1]

2 Conjunctive fusion and conflict:
m12(A) = m1(A)m2(A ∪ B) +m1(A)m2(A ∪ B ∪ C) = a(b1 + b2)
m12(A ∪ B) = m1(A ∪ B)m2(A ∪ B) +m1(A ∪ B)m2(A ∪ B ∪ C)

= (1− a)(b1 + b2)
K12 = m12(∅) = m1(A)m2(C) +m1(A ∪ B)m2(C) (4)

3 Dempster-Shafer fusion: Normalization by 1− K12 = b1 + b2

mDS(A) =
m12(A)
1− K12

=
a(b1 + b2)
b1 + b2

= a = m1(A)

mDS(A ∪ B) =
m12(A ∪ B)
1− K12

=
(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪ B)

mDS(.) = [m1 ⊕m2](.) = m1(.) even if m2(.) "= mv (.)

1Many examples like this one can be generated [9]
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On the validity of DST
A very emblematic example

1 Emblematic example1: Θ = {A,B,C} and two informative sources.
Focal elem. \ bba’s m1(.) != mv (.) m2(.) != mv (.)

A a 0
A ∪ B 1 − a b1
C 0 1 − b1 − b2

A ∪ B ∪ C 0 b2

a ∈ [0, 1], and b1, b2 > 0
such that b1 + b2 ∈ [0,1]

2 Conjunctive fusion and conflict:
m12(A) = m1(A)m2(A ∪ B) +m1(A)m2(A ∪ B ∪ C) = a(b1 + b2)
m12(A ∪ B) = m1(A ∪ B)m2(A ∪ B) +m1(A ∪ B)m2(A ∪ B ∪ C)

= (1− a)(b1 + b2)
K12 = m12(∅) = m1(A)m2(C) +m1(A ∪ B)m2(C) (4)

3 Dempster-Shafer fusion: Normalization by 1− K12 = b1 + b2

mDS(A) =
m12(A)
1− K12

=
a(b1 + b2)
b1 + b2

= a = m1(A)

mDS(A ∪ B) =
m12(A ∪ B)
1− K12

=
(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪ B)

mDS(.) = [m1 ⊕m2](.) = m1(.) even if m2(.) "= mv (.)

1Many examples like this one can be generated [9]

Contradiction
in DST

foundations

On the validity of DS rule

1 Important emblematic example Many examples like this one do exist [?]
Θ = {A,B,C} and 2 equi-reliable non vacuous sources with

Focal elem. \ bba’s m1(.) != mv (.) m2(.) != mv (.)
A a 0

A ∪ B 1 − a b1
C 0 1 − b1 − b2

A ∪ B ∪ C 0 b2

a ∈ [0, 1], and b1, b2 > 0 such that b1 + b2 ∈ [0, 1]
2 Dempster-Shafer fusion of sources

m12(A) = m1(A)m2(A ∪ B) + m1(A)m2(A ∪ B ∪ C) = a(b1 + b2)
m12(A ∪ B) = m1(A ∪ B)m2(A ∪ B) + m1(A ∪ B)m2(A ∪ B ∪ C) = (1− a)(b1 + b2)

K12 = m12(∅) = 1 − b1 − b2 (conflicting mass can take any low or high value)
After normalizing by 1 − K12 = b1 + b2, one gets with Dempster’s rule

mDS(A) = m12(A)/(1 − K12) =
a(b1 + b2)
b1 + b2

= a = m1(A)

mDS(A ∪ B) = m12(A ∪ B)/(1− K12) =
(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪ B)

mDS(.) = [m1 ⊕m2](.) = m1(.) even if m2(.) "= mv (.)
The informative source m2(.) doesn’t count⇒ Dictatorial power of DS rule
The level of conflict K12 doesn’t matter in the result.

Our claim: Such behavior is unreasonable and unacceptable

m12(A [B) = m1(A [B)m2(A [B) +m1(A [B)m2(A [B [ C) = (1� a)(b1 + b2)

m12(A) = m1(A)m2(A [B) +m1(A)m2(A [B [ C) = a(b1 + b2)

Normalization by 1�K12 = b1 + b2After normalization by one gets, with DS rule

This Dempster-Shafer fusion result is very counter intuitive

 Dezert-Tchamova example (cont’d)
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A. Case 1: Uniform Bayesian prior

It is important to note that Dempster’s fusion formula proposed by Shafer in [4] and recalled in Eq. (37) makes no real
distinction between the nature of sources to combine (if they are posterior or prior information). In fact, the formula (37) reduces
exactly to Bayes rule given in Eq. (27) if the bba’s to combine are Bayesian and if the prior information is either uniform or
vacuous. Stated otherwise the following functional equality holds

DS(m1(.), . . . ,ms(.);m0(.)) ≡ Bayes(P (X |Z1), . . . , P (X |Zs);P (X))

as soon as all bba’s mi(.), i = 1, 2, . . . , s are Bayesian and coincide with P (X |Zi), P (X) is uniform, and either the prior bba
m0(.) is vacuous (m0(.) = mv(.)), or m0(.) is the uniform Bayesian bba.

Example 3: Let us consider Θ(X) = {x1, x2, x3} with two distinct sources providing the following Bayesian bba’s






m1(x1) = P (X = x1|Z1) = 0.2
m1(x2) = P (X = x2|Z1) = 0.3
m1(x3) = P (X = x3|Z1) = 0.5

and







m2(x1) = P (X = x1|Z2) = 0.5
m2(x2) = P (X = x2|Z2) = 0.1
m2(x3) = P (X = x3|Z2) = 0.4

• If m0(.) the vacuous bba

that is m0(x1 ∪ x2 ∪ x3) = 1, then one will get





















mDS(x1) = 1
1−Kvacuous

12
m1(x1)m2(x1)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.2 · 0.5 · 1 = 0.10

0.33 ≈ 0.3030

mDS(x2) = 1
1−Kvacuous

12
m1(x2)m2(x2)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.3 · 0.1 · 1 = 0.03

0.33 ≈ 0.0909

mDS(x3) = 1
1−Kvacuous

12
m1(x3)m2(x3)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.5 · 0.4 · 1 = 0.20

0.33 ≈ 0.6061

with

Kvacuous
12 = 1−m1(x1)m2(x1)m0(x1 ∪ x2 ∪ x3)

−m1(x2)m2(x2)m0(x1 ∪ x2 ∪ x3)

−m1(x3)m2(x3)m0(x1 ∪ x2 ∪ x3) = 0.67

• If m0(x1) = m0(x2) = m0(x3) = 1/3 (uniform bba)
























mDS(x1) = 1
1−Kuniform

12

m1(x1)m2(x1)m0(x1)

= 1
1−0.890.2 · 0.5 · 1/3 = 0.10/3

0.11 ≈ 0.3030

mDS(x2) = 1
1−Kuniform

12

m1(x2)m2(x2)m0(x2)

= 1
1−0.890.3 · 0.1 · 1/3 = 0.03/3

0.11 ≈ 0.0909

mDS(x3) = 1
1−Kuniform

12

m1(x3)m2(x3)m0(x3)

= 1
1−0.890.5 · 0.4 · 1/3 = 0.20/3

0.11 ≈ 0.6061

where the degree of conflict when m0(.) is Bayesian and uniform is now given by

Kuniform
12 = 0.89

.

Clearly Kuniform
12 %= Kvacuous

12 , but the fusion results obtained with two distinct priors m0(.) (vacuous or uniform) are the
same because of the algebraic simplification by 1/3 in Dempster’s fusion formula when using uniform Bayesian bba. When
combining Bayesian bba’s m1(.) and m2(.), the vacuous prior and uniform prior m0(.) have therefore no impact on the result.
Indeed, they contain no information that may help to prefer one particular state xi with respect to the other ones, even if the
level of conflict is different in both cases. So, the level of conflict doesn’t matter at all in such Bayesian case. As already stated,
what really matters is only the distribution of relative agreement factors. It can be easily verified that we obtain same results
when applying Bayes Eq. (15), or (17).

Only in such very particular cases (i.e. Bayesian bba’s, and vacuous or Bayesian uniform priors), Dempster’s rule is fully
consistent with Bayes fusion rule. So the claim that Dempster’s is a generalization of Bayes rule is true in this very particular

Using informative prior bba/pmf:

Bayes rule

DS rule

cases. So, the level of conflict doesn’t matter at all in such Bayesian case. As already stated, what really matters is only the
distribution of relative agreement factors. It can be easily verified that we obtain same results when applying Bayes Eq. (15), or
(17).

Only in such very particular cases (i.e. Bayesian bba’s, and vacuous or Bayesian uniform priors), Dempster’s rule is fully
consistent with Bayes fusion rule. So the claim that Dempster’s is a generalization of Bayes rule is true in this very particular
case only, and that is why such claim has been widely used to defend Dempster’s rule and DST thanks to its compatibility
with Bayes fusion rule in that very particular case. Unfortunately, such compatibility is only partial and not general because it
is not longer valid when considering the more general cases involving non uniform Bayesian prior bba’s as shown in the next
subsection.

B. Case 2: Non uniform Bayesian prior

Let us consider Dempster’s fusion of Bayesian bba’s with a Bayesian non uniform priorm0(.). In such case it is easy to check
from the general structures of Bayes fusion rule (17) and Dempster’s fusion rule (37) that these two rules are incompatible. Indeed,
in Bayes rule one divides each posterior source mi(xj) by s

√

m0(xj), i = 1, 2, . . . s, whereas the prior source m0(.) is combined
in a pure conjunctive manner by Dempster’s rule with the bba’s mi(.), i = 1, 2, . . . s, as if m0(.) was a simple additional source.
This difference of processing prior information between the two approaches explains clearly the incompatibility of Dempster’s
rule with Bayes rule when Bayesian prior bba is not uniform. This incompatibility is illustrated in the next simple example.
Mahler and Fixsen have already proposed in [23], [24], [25] a modification of Dempster’s rule to force it to be compatible with
Bayes rule when combining Bayesian bba’s. The analysis of such modified Dempster’s rule is out of the scope of this paper.

s

√

m0(xj)

Example 4: Let us consider the same frame Θ(X), and same bba’s m1(.) and m2(.) as in the Example 3. Suppose that the
prior information is Bayesian and non uniform as follows:







m0(x1) = P (X = x1) = 0.6
m0(x2) = P (X = x2) = 0.3
m0(x3) = P (X = x3) = 0.1

Applying Bayes rule (13) yields:







P (x1|Z1 ∩ Z2) = A2(x1)
GA2

= 0.2·0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2|Z1 ∩ Z2) = A2(x2)
GA2

= 0.3·0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3|Z1 ∩ Z2) = A2(x3)
GA2

= 0.5·0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824

Applying Dempster’s rule yields mDS(xi) #= P (xi|Z1 ∩ Z2) because:








mDS(x1) = 1
1−0.9110 · 0.2 · 0.5 · 0.6 = 0.060

0.089 ≈ 0.6742

mDS(x2) = 1
1−0.9110 · 0.3 · 0.1 · 0.3 = 0.009

0.089 ≈ 0.1011

mDS(x3) = 1
1−0.9110 · 0.5 · 0.4 · 0.1 = 0.020

0.089 ≈ 0.2247

Therefore, one has in general6:

DS(m1(.), . . . ,ms(.);m0(.)) #= Bayes(P (X |Z1), . . . , P (X |Zs);P (X))

V. CONCLUSIONS
In this paper, we have analyzed in details the expression and the properties of Bayes rule of combination based on statistical

conditional independence assumption, as well as the emblematic Dempster’s rule of combination of belief functions introduced
by Shafer in his Mathematical Theory of evidence. We have clearly explained from a theoretical standpoint, and also on simple
examples, why Dempster’s rule is not a generalization of Bayes rule in general. The incompatibility of Dempster’s rule with
Bayes rule is due to its impossibility to deal with non uniform Bayesian priors in the same manner as Bayes rule does. Dempster’s
rule turns to be compatible with Bayes rule only in two very particular cases: 1) if all the Bayesian bba’s to combine (including
the prior) focus on same state (i.e. there is a perfect conjunctive consensus between the sources), or 2) if all the bba’s to combine
(excluding the prior) are Bayesian, and if the prior bba cannot help to discriminate a particular state of the frame of discernment
(i.e. the prior bba is either vacuous, or Bayesian and uniform). Except in these two very particular cases, Dempster’s rule is
totally incompatible with Bayes rule. Therefore, Dempster’s rule cannot be claimed to be a generalization of Bayes fusion rule,
even when the bba’s to combine are Bayesian.
6but in the very degenerate case when manipulating deterministic Bayesian bba’s, which is of little practical interest from the fusion standpoint.

Dempster’s rule to force it to be compatible with Bayes
rule when combining Bayesian bba’s. The analysis of such
modified Dempster’s rule is out of the scope of this paper.

Example 4: Let us consider the same frame Θ(X), and same
bba’s m1(.) and m2(.) as in the Example 3. Suppose that
the prior information is Bayesian and non uniform as follows:
m0(x1) = P (X = x1) = 0.6, m0(x2) = P (X = x2) = 0.3
and m0(x3) = P (X = x3) = 0.1. Applying Bayes rule (12)
yields:










P (x1|Z1 ∩ Z2) = A2(x1)
GA2

= 0.2·0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2|Z1 ∩ Z2) = A2(x2)
GA2

= 0.3·0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3|Z1 ∩ Z2) = A2(x3)
GA2

= 0.5·0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824











P (x1|Z1 ∩ Z2) = 0.2·0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2|Z1 ∩ Z2) = 0.3·0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3|Z1 ∩ Z2) = 0.5·0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824

Applying Dempster’s rule yields mDS(xi) #= P (xi|Z1 ∩ Z2)
because:










mDS(x1) = 1
1−0.9110 · 0.2 · 0.5 · 0.6 = 0.060

0.089 ≈ 0.6742

mDS(x2) = 1
1−0.9110 · 0.3 · 0.1 · 0.3 = 0.009

0.089 ≈ 0.1011

mDS(x3) = 1
1−0.9110 · 0.5 · 0.4 · 0.1 = 0.020

0.089 ≈ 0.2247

Therefore, one has in general6:

DS(m1(.), . . . ,ms(.);m0(.)) #=
Bayes(P (X |Z1), . . . , P (X |Zs);P (X)) (38)

V. CONCLUSIONS

In this paper, we have analyzed in details the expression
and the properties of Bayes rule of combination based on
statistical conditional independence assumption, as well as the
emblematic Dempster’s rule of combination of belief functions
introduced by Shafer in his Mathematical Theory of evidence.
We have clearly explained from a theoretical standpoint, and
also on simple examples, why Dempster’s rule is not a gen-
eralization of Bayes rule in general. The incompatibility of
Dempster’s rule with Bayes rule is due to its impossibility to
deal with non uniform Bayesian priors in the same manner
as Bayes rule does. Dempster’s rule turns to be compatible
with Bayes rule only in two very particular cases: 1) if all the
Bayesian bba’s to combine (including the prior) focus on same
state (i.e. there is a perfect conjunctive consensus between the
sources), or 2) if all the bba’s to combine (excluding the prior)
are Bayesian, and if the prior bba cannot help to discriminate a
particular state of the frame of discernment (i.e. the prior bba is
either vacuous, or Bayesian and uniform). Except in these two
very particular cases, Dempster’s rule is totally incompatible
with Bayes rule. Therefore, Dempster’s rule cannot be claimed
to be a generalization of Bayes fusion rule, even when the bba’s
to combine are Bayesian.

6but in the very degenerate case when manipulating deterministic Bayesian
bba’s, which is of little practical interest from the fusion standpoint.
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with Bayes fusion rule in that very particular case. Unfortunately, such compatibility is only partial and not general because it
is not longer valid when considering the more general cases involving non uniform Bayesian prior bba’s as shown in the next
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B. Case 2: Non uniform Bayesian prior

Let us consider Dempster’s fusion of Bayesian bba’s with a Bayesian non uniform priorm0(.). In such case it is easy to check
from the general structures of Bayes fusion rule (17) and Dempster’s fusion rule (37) that these two rules are incompatible. Indeed,
in Bayes rule one divides each posterior source mi(xj) by s

√

m0(xj), i = 1, 2, . . . s, whereas the prior source m0(.) is combined
in a pure conjunctive manner by Dempster’s rule with the bba’s mi(.), i = 1, 2, . . . s, as if m0(.) was a simple additional source.
This difference of processing prior information between the two approaches explains clearly the incompatibility of Dempster’s
rule with Bayes rule when Bayesian prior bba is not uniform. This incompatibility is illustrated in the next simple example.
Mahler and Fixsen have already proposed in [23], [24], [25] a modification of Dempster’s rule to force it to be compatible with
Bayes rule when combining Bayesian bba’s. The analysis of such modified Dempster’s rule is out of the scope of this paper.

s

√

m0(xj)

Example 4: Let us consider the same frame Θ(X), and same bba’s m1(.) and m2(.) as in the Example 3. Suppose that the
prior information is Bayesian and non uniform as follows: m0(x1) = P (X = x1) = 0.6, m0(x2) = P (X = x2) = 0.3 and
m0(x3) = P (X = x3) = 0.1. Applying Bayes rule (13) yields:









P (x1|Z1 ∩ Z2) = A2(x1)
GA2

= 0.2·0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2|Z1 ∩ Z2) = A2(x2)
GA2

= 0.3·0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3|Z1 ∩ Z2) = A2(x3)
GA2

= 0.5·0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824

Applying Dempster’s rule yields mDS(xi) #= P (xi|Z1 ∩ Z2) because:








mDS(x1) = 1
1−0.9110 · 0.2 · 0.5 · 0.6 = 0.060

0.089 ≈ 0.6742

mDS(x2) = 1
1−0.9110 · 0.3 · 0.1 · 0.3 = 0.009

0.089 ≈ 0.1011

mDS(x3) = 1
1−0.9110 · 0.5 · 0.4 · 0.1 = 0.020

0.089 ≈ 0.2247

Therefore, one has in general6:

DS(m1(.), . . . ,ms(.);m0(.)) #= Bayes(P (X |Z1), . . . , P (X |Zs);P (X))

V. CONCLUSIONS

In this paper, we have analyzed in details the expression and the properties of Bayes rule of combination based on statistical
conditional independence assumption, as well as the emblematic Dempster’s rule of combination of belief functions introduced
by Shafer in his Mathematical Theory of evidence. We have clearly explained from a theoretical standpoint, and also on simple
examples, why Dempster’s rule is not a generalization of Bayes rule in general. The incompatibility of Dempster’s rule with
Bayes rule is due to its impossibility to deal with non uniform Bayesian priors in the same manner as Bayes rule does. Dempster’s
rule turns to be compatible with Bayes rule only in two very particular cases: 1) if all the Bayesian bba’s to combine (including
the prior) focus on same state (i.e. there is a perfect conjunctive consensus between the sources), or 2) if all the bba’s to combine
(excluding the prior) are Bayesian, and if the prior bba cannot help to discriminate a particular state of the frame of discernment
(i.e. the prior bba is either vacuous, or Bayesian and uniform). Except in these two very particular cases, Dempster’s rule is
totally incompatible with Bayes rule. Therefore, Dempster’s rule cannot be claimed to be a generalization of Bayes fusion rule,
even when the bba’s to combine are Bayesian.
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Bayesian BBAs

Incompatibility of DS rule with Bayes rule

DS rule is incompatible with Bayes rule in general. 
DS rule is compatible with Bayes rule only if the prior is uniform or vacuous.

[Dezert/Tchamova/Han/Tacnet 2013]
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Major innovations of DST

- New combination rule for belief functions (DS rule)
- New appealing mathematical formalism of (quantitative) belief functions
- Important paradigm shift for modeling uncertainty

... but BF and DST have never been fully accepted by a part of 
scientific community and statisticians mainly because

- Independence between sources of evidence has never been well defined

- Doubts on the validity of DS rule (normalization is controversial)

- Good experimental protocol to validate DST and DS rule is lacking

See Zadeh 1979,Yager 1983, Lemmer 1985, Dubois 1986, Pearl 1988,Voorbraak 1991, 
Wang 1994, Walley 1996, Fixsen et al. 1997, Gelman 2006, Dezert & al. 2012, etc

Why going beyond DST
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What we have shown

- the problem of validity of DST is not due to conflict level, but the absolute 
truth interpretation of proposition by Shafer for each source.

- the conflict (high or low) can be totally ignored through DS rule.

- the dictatorial power of DS rule to fuse equi-reliable sources of evidence.

Recommendation

Recommendation

BF are mathematically appealing and well defined, but don’t use DS rule to 
combine them, even in low conflicting situations.

- We have proved a logical contradiction in the foundations of DST in
[Dezert J., Tchamova A., On the validity of Dempster's fusion rule and its interpretation as a 
generalization of Bayesian fusion rule, Int. J. of Intelligent Systems, Vol. 29 (3), March 2014.]
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How to better prevent troubles ?

Some tricks to reduce troubles with DS rule

Switch tobetter (more efficient) techniques to fusion vague, 
uncertain, imprecise, conflicting quantitative and qualitative information 
fusion for static or dynamic problematics.

1) Apply ad-hoc thresholdings on the conflict to accept (or reject) DS result.

2) Modify input BBAs, or apply discounting techniques on sources. 
    - How to be sure that no problem will occur with DS rule after discounting ? 
    - How to discount sources when no statistical data is available ?

3) Mix the two previous strategies.

 Reducing troubles with DST

This is what Dezert-Smarandache Theory (DSmT) proposes.
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Fundamental theorem

Shafer’s interpretation: A source can provide absolute truth from partial
knowledge, observation, experience, ...

Our interpretation: A source can provide only a relative truth from
partial knowledge, observation, experience, ...

Shafer’s interpretation yields to a logical contradiction in foundations of DST
which can be stated as follows

Theorem : Dempster-Shafer Theory is wrong because its foundation is
based on an inherent logical contradiction in Dempster-Shafer rule of
combination.
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Proof of the
theorem

Conclusions

Fundamental theorem

Shafer’s interpretation: A source can provide absolute truth from partial
knowledge, observation, experience, ...

Our interpretation: A source can provide only a relative truth from
partial knowledge, observation, experience, ...

Shafer’s interpretation yields to a logical contradiction in foundations of DST
which can be stated as follows

Theorem : Dempster-Shafer Theory is wrong because its foundation is
based on an inherent logical contradiction in Dempster-Shafer rule of
combination.

Such interpretation yields a logical contradiction in DST foundations.

DSmT versus DST in short

This new interpretation makes differences in the way to 
process belief functions.
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Why to use DSmT

It is a natural extension of the belief function framework to work with
 - different models for the frame (not only Shafer’s model)
 - with (possibly imprecise) quantitative belief functions
 - with qualitative belief functions (expressed as labels)
 - new PCR rules of combination, and conditioning
 - new probabilistic transformation and method for decision-making support

- provides better results in fusion applications than DST
- deals with static and dynamic frames in a same general framework
- can cover broader fields of applications (because of more flexibility)

What is DSmT (developed between 2002 and 2015)

Drawback of DSmT

- its higher complexity (from theoretical and implementation standpoints)

DSmT in short
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Free DSm model 

No constraint on elements of the frame 

Hybrid DSm model 

Shafer’s model = specific hybrid model
All exhaustive elements of the frame are known to be 
truly exclusive (i.e. a «refinement» is implicitly done)

We introduce integrity constraints into 
the free DSm model. 

Parts can have vague boundaries

Parts have precise boundaries

DSmT models
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Abstract – This paper presents in detail the generalized pig-

nistic transformation (GPT) succinctly developed in the Dezert-

Smarandache Theory (DSmT) framework as a tool for decision

process. The GPT allows to provide a subjective probability mea-

sure from any generalized basic belief assignment given by any

corpus of evidence. We mainly focus our presentation on the 3D

case and provide the complete result obtained by the GPT and its

validation drawn from the probability theory.

Keywords: Dezert-Smarandache Theory (DSmT), Dempster-

Shafer Theory,pignistic transformation, subjective probability,

pignistic probability, plausible and paradoxical reasoning, DSm

cardinality, hybrid model, data fusion, decision-making, conflict,

processing.

1 Introduction

In the recent theory of plausible and paradoxical reason-

ing (DSmT) developed by Dezert and Smarandache [2, 10],

a new generalized pignistic transformation has been pro-

posed to construct a subjective probability measure P{.}
from any generalized basic belief assignmentm(.) defined
over the hyper-power set DΘ. In reference [2], a simple

example of such generalized pignistic transformation has

been presented only for the case n = |Θ| = 2. In this
paper, we present the complete derivation of this pignistic

transformation for the case n = |Θ| = 3 and we generalize
the result. Before introducing the GPT, it is however nec-

essary to briefly present the DSmT [1, 2, 3, 4, 5, 10] with

respect to the Dempster-Shafer Theory (DST) [9].

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted here M0(Θ), on which is
based the Dempster-Shafer Theory, assumes an exhaustive

and exclusive frame of discernment of the problem under

consideration Θ = {θ1, θ2, . . . , θn}. The model requires
actually that an ultimate refinement of the problem is pos-

sible so that θi can always be well precisely defined/iden-

tified in such a way that we are sure that they are exclu-

sive and exhaustive. From this model, a basic belief as-

signment (bba) mi(.) : 2Θ → [0, 1] such that mi(∅) = 0

∗Partial support by the COST action 274 TARSKI acknowl-

edged.

and
∑

A∈2Θ mi(A) = 1 associated to a given body of evi-
dence Bi is defined, where 2Θ is the power set ofΘ, i.e. the
set of all subsets of Θ. Within DST, the fusion (combina-
tion) of two independent sources of evidence B1 and B2 is

obtained through the Dempster’s rule of combination [9] :

[m1 ⊕ m2](∅) = 0 and ∀B %= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all

X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assign-
ment if and only if the denominator in equation (1) is non-

zero. The term k12 !
∑

X∩Y =∅ m1(X)m2(Y ) is called
degree of conflict between the sources B1 and B2. When

k12 = 1, the Dempster’s sum m(.) does not exist and the
bodies of evidences B1 and B2 are said to be in full con-

tradiction. This rule of combination can be extended eas-

ily for the combination of n > 2 independent sources of
evidence. The DST, although very attractive because of its

solid mathematical ground, presents however several weak-

nesses and limitations because of the Shafer’s model itself

(which does not necessary hold in some fusion problems in-

volving continuous and ill-defined concepts), the justifica-

tion of the Dempster’s rule of combination frequently sub-

ject to criticisms, but mainly because of counter-intuitive

results given by the Dempster’s rule when the conflict be-

tween sources becomes important. Several classes of infi-

nite counter-examples to the Dempster’s rule can be found

in [13]. To overcome these limitations, Jean Dezert and

Florentin Smarandache propose a new mathematical theory

based on other models (free or hybrid DSm models) with

new reliable rules of combinations able to deal with any

kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache The-

ory) is to abandon the Shafer’s model (i.e. the exclusivity

constraint between θi of Θ) just because for some fusion
problems it is impossible to define/characterize the problem

in terms of well-defined/precise and exclusive elements.

The free DSm model, denotedMf (Θ), on which is based

Finite set of exhaustive elements 
(discrete/continuous/fuzzy/relative concepts)

|2�ref = S� � (�,⌅,⇧, c(.))| > |D� = (�,⌅,⇧)| > |2� = (�,⌅)|

G� represents the generic notation either for 2�, S� or D� including eventually integrity constraints.

A ⇤B A B A ⇥B
m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ⇥B A ⇥ C B ⇥ C A ⇥B ⇥ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ⇥B A ⇥ C B ⇥ C A ⇥B ⇥ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of � are empty, but A ⇧ B. In this case, G�

reduces to 9 elements {⇥, A⇧B, A, B,C, A⌅B, A⌅C, B ⌅C, A⌅B ⌅C}. The input masses of focal elements are given by
m(A ⇧B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ⌅B) = 0.30, m(A ⌅ C) = 0.10, and m(A ⌅B ⌅ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame �ref with Shafer’s model as depicted on
Figure 1 and masses given in the Table XV.

A ⇤B � D� A � A� ⇥D� C � C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ⇥B � A� ⇥B� ⇥D� A ⇥ C � A� ⇥ C� ⇥D� A ⇥B ⇥ C � A� ⇥B� ⇥ C� ⇥D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table XVI that DSmP��0 provides the best results in term of PIC metric. The refined frame has been
defined as: �ref = {A⇥ � A \ (A ⇧B), B⇥ � B \ (A ⇧B), C ⇥ � C, D⇥ � A ⇧B} according to Figure 1.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ⌅B)

· m(A ⌅ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ⌅B)
· m(A ⌅ B) (2)

DSmP�(A⌅B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ⌅B)
m(A) + m(B) + � · C(A ⌅B)

·m(A⌅B) (3)

Since we use Shafer’s model, C(A) = C(B) = 1 and C(A ⌅B) = 2,

the previous expressions reduce to

Super-power set = power set of the refined frame

Power sets, Hyper-power set (Dedekind’s lattice) and Super-power sets

Fusion spaces

Fusion spaces
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Generation of hyper-power sets

DSmT allows us to deal with imprecise/vague notions and

concepts between elements of the frame of discernment Θ.
The DSmT includes the possibility to deal with evidences

arising from different sources of information which don’t

have access to absolute interpretation of the elementsΘ un-

der consideration.

2.2.1 Notion of hyper-power set DΘ

From this very simple idea and from any frame Θ, a new
space DΘ = {α0, . . . , αd(n)−1} (free Boolean pre-algebra
generated byΘ and operators∩ and ∪), called hyper-power
set is defined [5] as follows:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ, (A ∩ B) ∈ DΘ

3. No other elements belong to DΘ, except those, ob-

tained by using rules 1 or 2.

The generation of hyper-power set DΘ is related with the

famous Dedekind’s problem on enumerating the set of

monotone Boolean functions. The cardinality d(n) of DΘ

follows the Dedekind sequence. It can be shown, see [4],

that all elements αi ofDΘ can then be obtained by the very

simple linear equation [4]

dn = Dn · un (2)

where dn ≡ [α0 ≡ ∅, α1, . . . , αd(n)−1]
′ is the vector of

elements of DΘ, un is the proper Smarandache’s codifi-

cation vector [4] and Dn a particular binary matrix build

recursively by the algorithm proposed in [4]. The final re-

sult dn is obtained from the previous matrix product after

identifying (+, ·)with (∪,∩) operators, 0 ·xwith ∅ and 1 ·x
with x). Dn is actually a binary matrix corresponding to all

possible isotone Boolean functions.

2.2.2 Classic DSm rule of combination

By adopting the free DSm model and from any general

frame of discernment Θ, one then defines a map mi(.) :
DΘ → [0, 1], associated to a given source of evidence Bi

such that mi(∅) = 0 and
∑

A∈DΘ mi(A) = 1. This ap-
proach allows us to model any source which supports para-

doxical (or intrinsic conflicting) information. From this

very simple free DSm model Mf (Θ), the classical DSm
rule of combinationm(.) ! [m1 ⊕ . . . ⊕ mk](.) of k ≥ 2
intrinsic conflicting and/or uncertain independent sources

of information is defined by [1]

mMf (Θ)(A) =
∑

X1,...,Xk∈DΘ

X1∩...∩Xk=A

k
∏

i=1

mi(Xi) (3)

and mMf (Θ)(∅) = 0 by definition. This rule, dealing

with uncertain and/or paradoxical/conflicting information is

commutative and associative and requires no normalization

procedure.

2.3 Extension of the DSmT to hybrid models

2.3.1 Notion of hybrid model

The adoption of the free DSm model (and the classic DSm

rule) versus the Shafer’s model (with the Dempster’s rule)

can also be subject to criticisms since not all fusion prob-

lems correspond to the free DSm model (neither to the

Shafer’s model). These two models can be viewed actu-

ally as the two opposite/extreme and specific models on

which are based the DSmT and the DST. In general, the

models for characterizing practical fusion problems do not

coincide neither with the Shafer’s model nor with the free

DSm model. They have an hybrid nature (only some θi

are truly exclusive).Very recently, F. Smarandache and J.

Dezert have extended the framework of the DSmT and the

previous DSm rule of combination for solving a wider class

of fusion problems in which neither free DSm or Shafer’s

models fully hold. This large class of problems corresponds

to problems characterized by any hybrid DSm model. A

hybrid DSm model is defined from the free DSm model

Mf(Θ) by introducing some integrity constraints on some
elements A ∈ DΘ, if there are some certain facts in ac-

cordance with the exact nature of the model related to the

problem under consideration [12]. An integrity constraint

on A ∈ DΘ consists in forcing A to be empty through the

modelM, denoted as A
M
≡ ∅. There are several possible

kinds of integrity constraints introduced in any free DSm

model:

• Exclusivity constraints: when some conjunctions of el-

ements of Θ are truly impossible, for example when

θi ∩ . . . ∩ θk
M
≡ ∅.

• Non-existential constraints: when some disjunctions

of elements of Θ are truly impossible, for example

when θi ∪ . . .∪ θk
M
≡ ∅. The degenerated hybrid DSm

modelM∅, defined by constraint according to the to-

tal ignorance: It ! θ1∪θ2∪ . . .∪θn
M
≡ ∅, is excluded

from consideration, because it is meaningless.

• Hybrid constraints: like for example (θi∩θj)∪θk
M
≡ ∅

and any other hybrid proposition/element of DΘ in-

volving both ∩ and ∪ operators such that at least one
element θk is subset of the constrained proposition.

The introduction of a given integrity constraint

A
M
≡ ∅ ∈ DΘ implies the set of inner constraints

B
M
≡ ∅ for all B ⊂ A. The introduction of two in-

tegrity constraints on A, B ∈ DΘ implies the constraint

(A ∪ B) ∈ DΘ ≡ ∅ and this implies the emptiness of all
C ∈ DΘ such that C ⊂ (A ∪ B).

The Shafer’s model, denotedM0(Θ), can be considered
as the most constrained hybrid DSm model including all

possible exclusivity constraintswithout non-existential con-

straint, since all elements in the frame are forced to be mu-

tually exclusive.

Hyper-power set reduces to 
classical power set for the 
Shafer’s model (when all 
elements are exclusive)

Example (FoD with n=3 elements) d(n=3)=19

The cardinality of hyper-power sets follows Dedekind’s numbers 
sequence when the size of the frame increases.

� = {�1, �2, �3}

14 CHAPTER 1. PRESENTATION OF DSMT

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, then A ∩ B ∈ DΘ and A ∪ B ∈ DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 or 2.

The dual (obtained by switching ∪ and ∩ in expressions) of DΘ is itself. There are elements in DΘ

which are self-dual (dual to themselves), for example α8 for the case when n = 3 in the example below.

The cardinality of DΘ is majored by 22n

when the cardinality of Θ equals n, i.e. |Θ| = n. The generation

of hyper-power set DΘ is closely related with the famous Dedekind problem [8, 7] on enumerating the set

of isotone Boolean functions. The generation of the hyper-power set is presented in chapter 2. Since for

any given finite set Θ, |DΘ| ≥ |2Θ| we call DΘ the hyper-power set of Θ.

Example of the first hyper-power sets DΘ

• For the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 ! ∅} and |DΘ| = 1.

• When Θ = {θ1}, one has DΘ = {α0 ! ∅, α1 ! θ1} and |DΘ| = 2.

• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with α0 ! ∅, α1 ! θ1 ∩ θ2,

α2 ! θ1, α3 ! θ2 and α4 ! θ1 ∪ θ2.

• When Θ = {θ1, θ2, θ3}, one has DΘ = {α0, α1, . . . , α18} and |DΘ| = 19 with

α0 ! ∅

α1 ! θ1 ∩ θ2 ∩ θ3 α10 ! θ2

α2 ! θ1 ∩ θ2 α11 ! θ3

α3 ! θ1 ∩ θ3 α12 ! (θ1 ∩ θ2) ∪ θ3

α4 ! θ2 ∩ θ3 α13 ! (θ1 ∩ θ3) ∪ θ2

α5 ! (θ1 ∪ θ2) ∩ θ3 α14 ! (θ2 ∩ θ3) ∪ θ1

α6 ! (θ1 ∪ θ3) ∩ θ2 α15 ! θ1 ∪ θ2

α7 ! (θ2 ∪ θ3) ∩ θ1 α16 ! θ1 ∪ θ3

α8 ! (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 ! θ2 ∪ θ3

α9 ! θ1 α18 ! θ1 ∪ θ2 ∪ θ3

Note that the complement Ā of any proposition A (except for ∅ and for the total ignorance It !

θ1 ∪ θ2 ∪ . . . ∪ θn), is not involved within DSmT because of the refutation of the third excluded middle.

In other words, ∀A ∈ DΘ with A '= ∅ or A '= It, Ā '∈ DΘ. Thus (DΘ,∩,∪) does not define a Boolean al-

gebra. The cardinality of hyper-power set DΘ for n ≥ 1 follows the sequence of Dedekind’s numbers [35],

i.e. 1,2,5,19,167,7580,7828353,... (see next chapter for details).
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Note that the complement Ā of any proposition A (except for ∅ and for the total ignorance It !

θ1 ∪ θ2 ∪ . . . ∪ θn), is not involved within DSmT because of the refutation of the third excluded middle.
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• For the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 ! ∅} and |DΘ| = 1.

• When Θ = {θ1}, one has DΘ = {α0 ! ∅, α1 ! θ1} and |DΘ| = 2.

• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with α0 ! ∅, α1 ! θ1 ∩ θ2,

α2 ! θ1, α3 ! θ2 and α4 ! θ1 ∪ θ2.

• When Θ = {θ1, θ2, θ3}, one has DΘ = {α0, α1, . . . , α18} and |DΘ| = 19 with

α0 ! ∅

α1 ! θ1 ∩ θ2 ∩ θ3 α10 ! θ2

α2 ! θ1 ∩ θ2 α11 ! θ3

α3 ! θ1 ∩ θ3 α12 ! (θ1 ∩ θ2) ∪ θ3

α4 ! θ2 ∩ θ3 α13 ! (θ1 ∩ θ3) ∪ θ2

α5 ! (θ1 ∪ θ2) ∩ θ3 α14 ! (θ2 ∩ θ3) ∪ θ1

α6 ! (θ1 ∪ θ3) ∩ θ2 α15 ! θ1 ∪ θ2

α7 ! (θ2 ∪ θ3) ∩ θ1 α16 ! θ1 ∪ θ3

α8 ! (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 ! θ2 ∪ θ3

α9 ! θ1 α18 ! θ1 ∪ θ2 ∪ θ3

Note that the complement Ā of any proposition A (except for ∅ and for the total ignorance It !

θ1 ∪ θ2 ∪ . . . ∪ θn), is not involved within DSmT because of the refutation of the third excluded middle.

In other words, ∀A ∈ DΘ with A '= ∅ or A '= It, Ā '∈ DΘ. Thus (DΘ,∩,∪) does not define a Boolean al-

gebra. The cardinality of hyper-power set DΘ for n ≥ 1 follows the sequence of Dedekind’s numbers [35],

i.e. 1,2,5,19,167,7580,7828353,... (see next chapter for details).

Hyper-power set 
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m(.) : G� � [0, 1] m(�) = 0
�

A�G�

m(A) = 1and

where G� is the fusion space (i.e. 2�, D�, or S� = 2�refined)

Bel(A) =
�

B�A
B⇥G�

m(B) Pl(A) =
�

B⌅A ⇥=⇤
B�G�

m(B)

One can also define qualitative BBA’s (using labels), and imprecise 
admissible (quantitative or qualitative) BBA’s - see [DSmTBooks]

Belief functions in DSmT 

and
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The Fusion challenge:

1 - Apply the conjunctive rule

2 - Calculate the total or partial conflicting masses

3 - Redistribute the (total or partial) conflicting mass proportionally on non-
empty sets according to the integrity constraints one has for the FoD

Example:

The proportional conflict redistribution (PCR) can be done in many ways.

- PCR rule #5 (PCR5) proposed by Smarandache & Dezert [DSmTBook3]
- PCR rule #6 (PCR6) proposed by Martin & Osswald [DSmTBook3]

PCR rules of combinations 

PCR5 = PCR6  for combining 2 sources

PCR5 ≠ PCR6  for combining s>2 sources
PCR6 is better than PCR5

The PCR5 and PCR6 fusion rules simplify greatly and coincide for the combination of two sources (s = 2). In such simplest
case, one always gets the resulting bba mPCR5/6(.) = mPCR6

1,2 (.) = mPCR5
1,2 (.) expressed as mPCR5/6(∅) = 0 and for all X "= ∅

in GΘ

mPCR5/6(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (8)

mPCR5/6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (9)

mPCR5/6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) +
∑

Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]

where all denominators in (9) are different from zero. If a denominator is zero, that fraction is discarded. All propositions/sets
are in a canonical form.

Example 1: See [2], Vol.2, Chap. 1 for more examples.

Let’s consider the frame of discernment Θ = {A,B} of exclusive elements. Here Shafer’s model holds so that GΘ = 2Θ =
{∅, A,B,A ∪B}. We consider two sources of evidences providing the following bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :
m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass
m12(A ∩B = ∅) = m1(A)m2(B) +m1(B)m2(A)

= 0.18 + 0.06 = 0.24

One sees that only A and B are involved in the derivation of the conflicting mass, but not A∪B. With PCR5/6, one redistributes
the partial conflicting mass 0.18 to A and B proportionally with the masses m1(A) and m2(B) assigned to A and B respectively,
and also the partial conflicting mass 0.06 to A and B proportionally with the masses m2(A) and m1(B) assigned to A and B
respectively, thus one gets two weighting factors of the redistribution for each corresponding set A and B respectively. Let x1

be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial conflicting
mass 0.18. This first partial proportional redistribution is then done according

x1

0.6
=

y1
0.3

=
x1 + y1
0.6 + 0.3

=
0.18

0.9
= 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now let x2 be the conflicting mass to be redistributed to A, and
y2 the conflicting mass redistributed to B from the second the partial conflicting mass 0.06. This second partial proportional
redistribution is then done according

x2

0.2
=

y2
0.3

=
x2 + y2
0.2 + 0.3

=
0.06

0.5
= 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036. Thus one finally gets:
mPCR5/6(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR5/6(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5/6(A ∪B) = 0.05 + 0 = 0.05
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The Fusion challenge:

Combining two BBAs with PCR5/6 rules

Example:

The PCR5 and PCR6 fusion rules simplify greatly and coincide for the combination of two sources (s = 2). In such simplest
case, one always gets the resulting bba mPCR5/6(.) = mPCR6

1,2 (.) = mPCR5
1,2 (.) expressed as mPCR5/6(∅) = 0 and for all X "= ∅

in GΘ

mPCR5/6(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (8)

mPCR5/6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (9)

mPCR5/6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) +
∑

Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]

where all denominators in (9) are different from zero. If a denominator is zero, that fraction is discarded. All propositions/sets
are in a canonical form.

Example 1: See [2], Vol.2, Chap. 1 for more examples.

Let’s consider the frame of discernment Θ = {A,B} of exclusive elements. Here Shafer’s model holds so that GΘ = 2Θ =
{∅, A,B,A ∪B}. We consider two sources of evidences providing the following bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :
m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass
m12(A ∩B = ∅) = m1(A)m2(B) +m1(B)m2(A)

= 0.18 + 0.06 = 0.24

One sees that only A and B are involved in the derivation of the conflicting mass, but not A∪B. With PCR5/6, one redistributes
the partial conflicting mass 0.18 to A and B proportionally with the masses m1(A) and m2(B) assigned to A and B respectively,
and also the partial conflicting mass 0.06 to A and B proportionally with the masses m2(A) and m1(B) assigned to A and B
respectively, thus one gets two weighting factors of the redistribution for each corresponding set A and B respectively. Let x1

be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial conflicting
mass 0.18. This first partial proportional redistribution is then done according

x1

0.6
=

y1
0.3

=
x1 + y1
0.6 + 0.3

=
0.18

0.9
= 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now let x2 be the conflicting mass to be redistributed to A, and
y2 the conflicting mass redistributed to B from the second the partial conflicting mass 0.06. This second partial proportional
redistribution is then done according

x2

0.2
=

y2
0.3

=
x2 + y2
0.2 + 0.3

=
0.06

0.5
= 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036. Thus one finally gets:
mPCR5/6(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR5/6(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5/6(A ∪B) = 0.05 + 0 = 0.05

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different
from the two previous examples, which means that m2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict;
why?, because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in

the conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the masses m1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

masses m2(A) and m1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution

for each corresponding set A and B respectively. Let x1 be the conflicting mass to be redistributed to A, and y1 the

conflicting mass redistributed to B from the first partial conflicting mass 0.18. This first partial proportional redistribution

is then done according x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2 whence x1 = 0.6 · 0.2 = 0.12,
y1 = 0.3 ·0.2 = 0.06. Now let x2 be the conflicting mass to be redistributed toA, and y2 the conflicting mass redistributed

to B from second the partial conflicting mass 0.06. This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2+0.3) = 0.06/0.5 = 0.12 whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

The result is different from PCR1, PCR2, PCR3 and PCR4 since one has7:

With PCR1 With PCR2 ∼PCR3
mPCR1(A) = 0.536 mPCR2(A) ≈ 0.577
mPCR1(B) = 0.342 mPCR2(B) ≈ 0.373

mPCR1(A ∪ B) = 0.122 mPCR2(A ∪ B) = 0.05

With PCR4 With Dempster’s rule

mPCR4(A) ≈ 0.589 mDS(A) ≈ 0.579
mPCR4(B) ≈ 0.361 mDS(B) ≈ 0.355

mPCR4(A ∪ B) = 0.05 mDS(A ∪ B) ≈ 0.066

One clearly sees that mDS(A ∪ B) gets some mass from the conflicting mass although A ∪ B does not deserve any part

of the conflicting mass since A ∪ B is not involved in the conflict (only A and B are involved in the conflicting mass).

Dempster’s rule appears to us less exact than PCR5.

7The verification is left to the reader.

Example

A ⌥ B ⌥ C in minC version a), and worse in minC version b) to A, B, C, A ⌥ B, A ⌥ C, B ⌥ C and A ⌥ B ⌥ C (see

example in section 5). PCR4 rule improves this and redistributes the mass m(C � (A ⌥ B)) to C and A ⌥ B only, since

only them were involved in the conflict: i.e. m12(C � (A ⌥ B)) = m1(C)m2(A ⌥ B) + m2(C)m1(A ⌥ B), clearly the
other elements A, B, A⌥B ⌥C that get some mass in minC were not involved in the conflict C � (A⌥B). If at least one
conjunctive rule result is null, then the partial conflicting mass which involved this set is redistributed proportionally to the

column sums corresponding to each set. Thus PCR4 does a more exact redistribution than both minC versions (versions a)

and b) explicated in section 5. The PCR4 rule partially extends Dempster’s rule in the sense that instead of redistributing

the total conflicting mass as within Dempster’s rule, PCR4 redistributes partial conflicting masses, hence PCR4 does

a better refined redistribution than Dempster’s rule; PCR4 and Dempster’s rule coincide for � = {A,B}, in Shafer’s
model, with s ⇥ 2 sources, and such that m12...s(A) > 0, m12...s(B) > 0, and m12...s(A ⌥ B) = 0. Thus according to
authors opinion, PCR4 rule redistributes better than Dempster’s rule since in PCR one goes on partial conflicting, while

Dempster’s rule redistributes the conflicting mass to all non-empty sets whose conjunctive mass is nonzero, even those

not involved in the conflict.

10.2 The PCR4 formula

The PCR4 formula for s = 2 sources: ⇧X ⇤ G \ {⌃}

mPCR4(X) = m12(X) · [1 +
⇥

Y ⇥G
c(Y ⇧X)=⇤

m12(X � Y )
m12(X) + m12(Y )

] (29)

withm12(X) andm12(Y ) nonzero. m12(.) corresponds to the conjunctive consensus, i.e.

m12(X) �
⇥

X1,X2⇥G
X1⇧X2=X

m1(X1)m2(X2) .

If at least one ofm12(X) orm12(Y ) is zero, the fraction is discarded and the massm12(X � Y ) is transferred to X and

Y proportionally with respect to their non-zero column sum of masses; if both their column sums of masses are zero, then

one transfers to the partial ignoranceX⌥Y ; if even this partial ignorance is empty then one transfers to the total ignorance.

Let G = {X1, . . . , Xn} ⌅= ⌃ (G being either the power-set or hyper-power set depending on the model we want to

deal with), n ⇥ 2, ⇧X ⌅= ⌃, X ⇤ G, the general PCR4 formula for s ⇥ 2 sources is given by ⇧X ⇤ G \ {⌃}

mPCR4(X) = m12...s(X) · [1 +
s�1⇥

k=1

SPCR4(X, k)] (30)

with

SPCR4(X, k) �
⇥

Xi1 ,...,Xik
⇥G\{X}

{i1,...,ik}⇥Pk({1,2,...,n})
c(X⇧Xi1⇧...⇧Xik

)=⇤

m12...s(X �Xi1 � . . . �Xik)
m12...s(X) +

�k
j=1 m12...s(Xij )

(31)

with allm12...s(X),m12...s(X1), . . . ,m12...s(Xn) nonzero and where the first term of the right side of (30) corresponds to
the conjunctive consensus between s sources (i.e. m12...s(.)). If at least one ofm12...s(X),m12...s(X1), . . . ,m12...s(Xn)
is zero, the fraction is discarded and the mass m12...s(X � X1 � X2 � . . . � Xk) is transferred to X , X1, . . . , Xk

proportionally with respect to their corresponding column sums in the mass matrix.

10.3 Example for PCR4 versus minC

Let’s consider � = {A,B}, Shafer’s model and the the two following bbas:

m1(A) = 0.6 m1(B) = 0.3 m1(A ⌥B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ⌥B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ⌥B) = 0.05

with the conflicting mass

k12 = m12(A �B) = m1(A)m2(B) + m1(B)m2(A) = 0.24

21

See [DSmTBooks] for general formulas

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means thatm2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict; why?,
because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in the

conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means thatm2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict; why?,
because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in the

conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

(
x1 = 0.6 · 0.2 = 0.12
y1 = 0.3 · 0.2 = 0.06(
x2 = 0.2 · 0.12 = 0.024
y2 = 0.3 · 0.12 = 0.036

The PCR5 and PCR6 fusion rules simplify greatly and coincide for the combination of two sources (s = 2). In such simplest
case, one always gets the resulting bba mPCR5/6(.) = mPCR6

1,2 (.) = mPCR5
1,2 (.) expressed as mPCR5/6(∅) = 0 and for all X "= ∅

in GΘ

mPCR5/6(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (8)

mPCR5/6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (9)

mPCR5/6(X) =
∑
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X1∩X2=X

m1(X1)m2(X2) +
∑

Y ∈2Θ\{X}
X∩Y=∅
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m1(X)2m2(Y )

m1(X) +m2(Y )
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m2(X)2m1(Y )

m2(X) +m1(Y )
]

where all denominators in (9) are different from zero. If a denominator is zero, that fraction is discarded. All propositions/sets
are in a canonical form.

Example 1: See [2], Vol.2, Chap. 1 for more examples.

Let’s consider the frame of discernment Θ = {A,B} of exclusive elements. Here Shafer’s model holds so that GΘ = 2Θ =
{∅, A,B,A ∪B}. We consider two sources of evidences providing the following bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :
m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass
m12(A ∩B = ∅) = m1(A)m2(B) +m1(B)m2(A)

= 0.18 + 0.06 = 0.24

One sees that only A and B are involved in the derivation of the conflicting mass, but not A∪B. With PCR5/6, one redistributes
the partial conflicting mass 0.18 to A and B proportionally with the masses m1(A) and m2(B) assigned to A and B respectively,
and also the partial conflicting mass 0.06 to A and B proportionally with the masses m2(A) and m1(B) assigned to A and B
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be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial conflicting
mass 0.18. This first partial proportional redistribution is then done according

x1

0.6
=

y1
0.3

=
x1 + y1
0.6 + 0.3

=
0.18

0.9
= 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now let x2 be the conflicting mass to be redistributed to A, and
y2 the conflicting mass redistributed to B from the second the partial conflicting mass 0.06. This second partial proportional
redistribution is then done according
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0.2
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y2
0.3

=
x2 + y2
0.2 + 0.3

=
0.06

0.5
= 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036. Thus one finally gets:
mPCR5/6(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR5/6(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5/6(A ∪B) = 0.05 + 0 = 0.05

The PCR5 and PCR6 fusion rules simplify greatly and coincide for the combination of two sources (s = 2). In such simplest
case, one always gets the resulting bba mPCR5/6(.) = mPCR6

1,2 (.) = mPCR5
1,2 (.) expressed as mPCR5/6(∅) = 0 and for all X "= ∅
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where all denominators in (9) are different from zero. If a denominator is zero, that fraction is discarded. All propositions/sets
are in a canonical form.

Example 1: See [2], Vol.2, Chap. 1 for more examples.

Let’s consider the frame of discernment Θ = {A,B} of exclusive elements. Here Shafer’s model holds so that GΘ = 2Θ =
{∅, A,B,A ∪B}. We consider two sources of evidences providing the following bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :
m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass
m12(A ∩B = ∅) = m1(A)m2(B) +m1(B)m2(A)

= 0.18 + 0.06 = 0.24

One sees that only A and B are involved in the derivation of the conflicting mass, but not A∪B. With PCR5/6, one redistributes
the partial conflicting mass 0.18 to A and B proportionally with the masses m1(A) and m2(B) assigned to A and B respectively,
and also the partial conflicting mass 0.06 to A and B proportionally with the masses m2(A) and m1(B) assigned to A and B
respectively, thus one gets two weighting factors of the redistribution for each corresponding set A and B respectively. Let x1

be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial conflicting
mass 0.18. This first partial proportional redistribution is then done according

x1

0.6
=

y1
0.3

=
x1 + y1
0.6 + 0.3

=
0.18

0.9
= 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now let x2 be the conflicting mass to be redistributed to A, and
y2 the conflicting mass redistributed to B from the second the partial conflicting mass 0.06. This second partial proportional
redistribution is then done according

x2

0.2
=

y2
0.3

=
x2 + y2
0.2 + 0.3

=
0.06

0.5
= 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036. Thus one finally gets:
mPCR5/6(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR5/6(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5/6(A ∪B) = 0.05 + 0 = 0.05

The mass put on 
ignorance with PCR5/6 
is lower than with DST

Example for PCR5/6 rules
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A ⌥ B ⌥ C in minC version a), and worse in minC version b) to A, B, C, A ⌥ B, A ⌥ C, B ⌥ C and A ⌥ B ⌥ C (see

example in section 5). PCR4 rule improves this and redistributes the mass m(C � (A ⌥ B)) to C and A ⌥ B only, since

only them were involved in the conflict: i.e. m12(C � (A ⌥ B)) = m1(C)m2(A ⌥ B) + m2(C)m1(A ⌥ B), clearly the
other elements A, B, A⌥B ⌥C that get some mass in minC were not involved in the conflict C � (A⌥B). If at least one
conjunctive rule result is null, then the partial conflicting mass which involved this set is redistributed proportionally to the

column sums corresponding to each set. Thus PCR4 does a more exact redistribution than both minC versions (versions a)

and b) explicated in section 5. The PCR4 rule partially extends Dempster’s rule in the sense that instead of redistributing

the total conflicting mass as within Dempster’s rule, PCR4 redistributes partial conflicting masses, hence PCR4 does

a better refined redistribution than Dempster’s rule; PCR4 and Dempster’s rule coincide for � = {A,B}, in Shafer’s
model, with s ⇥ 2 sources, and such that m12...s(A) > 0, m12...s(B) > 0, and m12...s(A ⌥ B) = 0. Thus according to
authors opinion, PCR4 rule redistributes better than Dempster’s rule since in PCR one goes on partial conflicting, while

Dempster’s rule redistributes the conflicting mass to all non-empty sets whose conjunctive mass is nonzero, even those

not involved in the conflict.

10.2 The PCR4 formula

The PCR4 formula for s = 2 sources: ⇧X ⇤ G \ {⌃}

mPCR4(X) = m12(X) · [1 +
⇥

Y ⇥G
c(Y ⇧X)=⇤

m12(X � Y )
m12(X) + m12(Y )

] (29)

withm12(X) andm12(Y ) nonzero. m12(.) corresponds to the conjunctive consensus, i.e.

m12(X) �
⇥

X1,X2⇥G
X1⇧X2=X

m1(X1)m2(X2) .

If at least one ofm12(X) orm12(Y ) is zero, the fraction is discarded and the massm12(X � Y ) is transferred to X and

Y proportionally with respect to their non-zero column sum of masses; if both their column sums of masses are zero, then

one transfers to the partial ignoranceX⌥Y ; if even this partial ignorance is empty then one transfers to the total ignorance.

Let G = {X1, . . . , Xn} ⌅= ⌃ (G being either the power-set or hyper-power set depending on the model we want to

deal with), n ⇥ 2, ⇧X ⌅= ⌃, X ⇤ G, the general PCR4 formula for s ⇥ 2 sources is given by ⇧X ⇤ G \ {⌃}

mPCR4(X) = m12...s(X) · [1 +
s�1⇥

k=1

SPCR4(X, k)] (30)

with

SPCR4(X, k) �
⇥

Xi1 ,...,Xik
⇥G\{X}

{i1,...,ik}⇥Pk({1,2,...,n})
c(X⇧Xi1⇧...⇧Xik

)=⇤

m12...s(X �Xi1 � . . . �Xik)
m12...s(X) +

�k
j=1 m12...s(Xij )

(31)

with allm12...s(X),m12...s(X1), . . . ,m12...s(Xn) nonzero and where the first term of the right side of (30) corresponds to
the conjunctive consensus between s sources (i.e. m12...s(.)). If at least one ofm12...s(X),m12...s(X1), . . . ,m12...s(Xn)
is zero, the fraction is discarded and the mass m12...s(X � X1 � X2 � . . . � Xk) is transferred to X , X1, . . . , Xk

proportionally with respect to their corresponding column sums in the mass matrix.

10.3 Example for PCR4 versus minC

Let’s consider � = {A,B}, Shafer’s model and the the two following bbas:

m1(A) = 0.6 m1(B) = 0.3 m1(A ⌥B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ⌥B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ⌥B) = 0.05

with the conflicting mass

k12 = m12(A �B) = m1(A)m2(B) + m1(B)m2(A) = 0.24
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Shafer’s model

Let’s consider the partial conflicting mass.

• The difference between PCR5 and PCR6 fusion rules

For the two sources case, PCR5 and PCR6 fusion rules coincide. As soon as three (or more) sources are involved in the fusion
process, PCR5 and PCR6 differ in the way the proportional conflict redistribution is done. For example, let’s consider three
sources with bba’s m1(.), m2(.) and m3(.), A ∩ B = ∅ for the model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3,
m3(B) = 0.1.

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

m3(A) = 0.7 m3(B) = 0.1 m3(A ∪B) = 0.2

– With PCR5, the mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018

corresponding to a conflict is redistributed back to A and B only with respect to the following proportions respectively: xPCR5
A =

0.01714 and xPCR5
B = 0.00086 because the proportionalization requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) +m2(B)m3(B)

that is
xPCR5
A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

Thus
{

xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

– With the PCR6 fusion rule, the partial conflicting mass m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redistributed back to
A and B only with respect to the following proportions respectively: xPCR6

A = 0.0108 and xPCR6
B = 0.0072 because the PCR6

proportionalization is done as follows:

xPCR6
A

m1(A)
=

xPCR6
B

m2(B) +m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + (m2(B) +m3(B))

that is
xPCR6
A

0.6
=

xPCR6
B

0.3 + 0.1
=

0.018
0.6 + (0.3 + 0.1)

= 0.018

and therefore with PCR6, one gets finally the following redistributions to A and B:
{

xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B = (0.3 + 0.1) · 0.018 = 0.0072

In [2], Vol. 2, Chap. 2, Martin and Osswald have proposed PCR6 based on intuitive considerations and the authors have
shown through simulations that PCR6 is more stable than PCR5 in term of decision for combining s > 2 sources of evidence.
Based on these results and the relative ”simplicity” of implementation of PCR6 over PCR5, PCR6 has been considered more
interesting/efficient than PCR5 for combining 3 (or more) sources of evidences.

III. CONSISTENCY OF PCR6 WITH THE AVERAGING RULE

In this section we show why we also consider PCR6 as better than PCR5 for combining bba’s. But here, our argumentation is
not based on particular simulation results and decision-making as done by Martin and Osswald, but on a theoretical analysis of
the structure of PCR6 fusion rule itself. In particular, we show the full consistency of PCR6 rule with the averaging fusion rule
used to empirically estimate probabilities in random experiments. For doing this, it is necessary to simplify the original PCR6
fusion formula (6). Such simplification has already been proposed in [12] and the PCR6 fusion rule can be in fact rewritten as

mPCR6
1,2,...,s(∅) = 0

• The difference between PCR5 and PCR6 fusion rules

For the two sources case, PCR5 and PCR6 fusion rules coincide. As soon as three (or more) sources are involved in the fusion
process, PCR5 and PCR6 differ in the way the proportional conflict redistribution is done. For example, let’s consider three
sources with bba’s m1(.), m2(.) and m3(.), A ∩ B = ∅ for the model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3,
m3(B) = 0.1.

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

m3(A) = 0.7 m3(B) = 0.1 m3(A ∪B) = 0.2

– With PCR5, the mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018

corresponding to a conflict is redistributed back to A and B only with respect to the following proportions respectively: xPCR5
A =

0.01714 and xPCR5
B = 0.00086 because the proportionalization requires
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Thus
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B = 0.03 · 0.02857 ≈ 0.00086
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In [2], Vol. 2, Chap. 2, Martin and Osswald have proposed PCR6 based on intuitive considerations and the authors have
shown through simulations that PCR6 is more stable than PCR5 in term of decision for combining s > 2 sources of evidence.
Based on these results and the relative ”simplicity” of implementation of PCR6 over PCR5, PCR6 has been considered more
interesting/efficient than PCR5 for combining 3 (or more) sources of evidences.

III. CONSISTENCY OF PCR6 WITH THE AVERAGING RULE

In this section we show why we also consider PCR6 as better than PCR5 for combining bba’s. But here, our argumentation is
not based on particular simulation results and decision-making as done by Martin and Osswald, but on a theoretical analysis of
the structure of PCR6 fusion rule itself. In particular, we show the full consistency of PCR6 rule with the averaging fusion rule
used to empirically estimate probabilities in random experiments. For doing this, it is necessary to simplify the original PCR6
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mPCR6
1,2,...,s(∅) = 0

PCR6 result is more stable than PCR5 result for decision making, 
and PCR6 is consitent with frequentist proba estimate.
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shown through simulations that PCR6 is more stable than PCR5 in term of decision for combining s > 2 sources of evidence.
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mPCR6
1,2,...,s(∅) = 0

Difference between PCR5 and PCR6

Example
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The Fusion challenge:

Example:

Advantages PCR5/6 rules work with any conflict, and outperfom DS rule.

Drawbacks Complexity, non-associativity

Advantages and drawbacks of PCR rules 

Why PCR6 is considered better than PCR5 and DS rule

PCR6 can be used to estimate correctly frequentist probas in 
random binary experiment. DS and PCR5 do not work.

[Smarandache F., Dezert J., On the consistency of PCR6 with the averaging 
rule and its application to probability estimation, Proc. of Fusion 2013.]
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Complexity of BF

How to reduce complexity for combining BF

Implement fusion rules with sampling techniques [DSmT Book 3,Chap6]

Approximate BBA by simpler ones
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1 Introduction

(|2Θ| = 2n) < (|DΘ| = d(n)) < (|2Θref | = 22n−1)

|Θ| = n |2Θ| = 2n |DΘ| = d(n) |2Θref | = 22n−1

2 4 5 23 = 8
3 8 19 27 = 128
4 16 167 215 = 32768
5 32 7580 231 = 2147483648

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [m1 ⊕ m2] ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m1 ⊕ [m2 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m2 ⊕ [m1 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

In the recent theory of plausible and paradoxical reasoning (DSmT) developed by Dezert and Smarandache [2, 10],

a new generalized pignistic transformation has been proposed to construct a subjective probability measure P{.} from
any generalized basic belief assignment m(.) defined over the hyper-power set DΘ. In reference [2], a simple example

of such generalized pignistic transformation has been presented only for the case n = |Θ| = 2. In this paper, we present
the complete derivation of this pignistic transformation for the case n = |Θ| = 3 and we generalize the result. Before
introducing the GPT, it is however necessary to briefly present the DSmT [1, 2, 3, 4, 5, 10] with respect to the Dempster-

Shafer Theory (DST) [9].

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [(m1 ⊕ m2) ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m1 ⊕ (m2 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m2 ⊕ (m1 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

m(.) : 2Θ → [0, 1]

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1

Bel(A) =
∑

B∈2Θ,B⊆A

m(B)

Pl(A) =
∑

B∈2Θ,B∩A %=∅

m(B) = 1 − Bel(Ā)

∗Partial support by the COST action 274 TARSKI acknowledged.

The Generalized Pignistic Transformation

Jean Dezert Florentin Smarandache Milan Daniel∗

ONERA Dpt.of Mathematics Institute of Computer Science

9 Av. de la Div. Leclerc Univ. of New Mexico Academy of Sciences of the Czech Republic

92320 Châtillon Gallup, NM 8730 Pod vodárenskou věžı́ 2, CZ - 182 07 Prague 8
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Use simpler fusion rules

Complexity of DSmT
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Simplest method keeps only singletons as focal elements and 
normalize, but we loose information on partial ignorances

Pignistic transform redistributes mass of partial ignorances equally 
to singletons included in them [Smets 1990]
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θ2

% θ3

<12>
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<2><1>

Then, one gets the following list of elements (with their

DSm cardinal) for the restrictedDΘ taking into account the

integrity constraints of this hybrid model:

A ∈ DΘ CM(A)
α0 ! ∅ 0
α1 ! θ1 ∩ θ2 1
α2 ! θ3 1
α3 ! θ1 2
α4 ! θ2 2
α5 ! θ1 ∪ θ2 3
α6 ! θ1 ∪ θ3 3
α7 ! θ2 ∪ θ3 3
α8 ! θ1 ∪ θ2 ∪ θ3 4

Table 2: CM(A) for the chosen hybrid modelM

2.4.4 A 3D example with the Shafer’s model

Consider now the same 3D case but with all exclusivity

constraints on θi, i = 1, 2, 3. This corresponds to the

3D Shafer’s model M0 presented in the following Venn

diagram.

!"
#$

!"
#$

!"
#$

!"
θ1

#$
θ2

% θ3<3>

<2><1>

Then, one gets the following list of elements (with their

DSm cardinal) for the restricted DΘ, which coincides nat-

urally with the classical power-set 2Θ:

A ∈ (DΘ ≡ 2Θ) CM0(A)
α0 ! ∅ 0
α1 ! θ1 1
α2 ! θ2 1
α3 ! θ3 1
α4 ! θ1 ∪ θ2 2
α5 ! θ1 ∪ θ3 2
α6 ! θ2 ∪ θ3 2
α7 ! θ1 ∪ θ2 ∪ θ3 3

Table 3: CM(A) for the 3D Shafer’s modelM0

3 The Pignistic Transformation

We follow here the Smets’ point of view [14] about the

assumption that beliefs manifest themselves at two mental

levels: the credal level where beliefs are entertained and the

pignistic level where belief are used to make decisions. Pig-

nistic terminology has been coined by Philippe Smets and

comes from pignus, a bet in Latin. The probability func-

tions, usually used to quantify beliefs at both levels, are

actually used here only to quantify the uncertainty when a

decision is really necessary, otherwise we argue as Philippe

Smets does, that beliefs are represented by belief functions.

To take a rational decision, we propose to transform beliefs

into pignistic probability functions through the Generalized

Pignistic Transformation (GPT) which will be presented in

the sequel. We first recall the classical Pignistic Transfor-

mation based on the DST and then we generalize it within

the DSmT framework.

3.1 Classical Pignistic Transformation

When a decision must be taken, we use the expected util-

ity theory which requires to construct a probability function

P{.} from basic belief functionm(.) [14]. This is achieved
by the so-called classical Pignistic Transformation1 as fol-

lows (see [13] for justification):

P{A} =
∑

X∈2Θ

|X ∩ A|

|X |
m(X) (8)

where |A| denotes the number of worlds in the set A (with

convention |∅|/|∅| = 1, to define P{∅}). P{A} corre-
sponds to BetP (A) in the Smets notation [14]. Decisions
are achieved by computing the expected utilities of the acts

using the subjective/pignistic P{.} as the probability func-
tion needed to compute expectations. Usually, one uses the

maximum of the pignistic probability as decision criterion.

The max. of P{.} is often considered as a prudent betting
decision criterion between the two other alternatives (max

of plausibility or max. of credibility which appears to be

respectively too optimistic or too pessimistic). It is easy to

show that P{.} is indeed a probability function (see [13]).

3.2 Generalized Pignistic Transformation

3.2.1 Definition

To take a rational decision within the DSmT framework,

it is then necessary to generalize the Classical Pignistic

Transformation in order to construct a Pignistic Probabil-

ity function from any generalized basic belief assignment

m(.) drawn form the DSm rule of combination (the classic
or hybrid rule). This Generalized Pignistic Transformation

(GPT) is defined by: ∀A ∈ DΘ,

P{A} =
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X) (9)

1We don’t divide here m(X) by 1 − m(∅) as in the P. Smets’
formulation just because m(∅) = 0 in the DSmT framework, un-
less there is a solid necessity to justify to do it.

Approximate a BBA by a simpler one (probabilistic transforms)

DSmP transform redistributes mass of partial ignorances proportionally 
to masses of singletons included in them [Dezert-Smarandache 2008]

Qualitative BetP and DSmP are possible. Other transforms exist.

Probabilistic transformations
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Example BetP versus DSmP

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2











Bel(θ1) = m(θ1) = 0.2

Bel(θ2) = m(θ2) = 0

Bel(θ3) = m(θ3) = 0.5











Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = m(θ1) +m(θ3) +m(θ1 ∪ θ3) = 0.7

Bel(θ2 ∪ θ3) = m(θ2) +m(θ3) +m(θ2 ∪ θ3) = 0.5

Bel(θ1∪θ2∪θ3) = Pl(θ1∪θ2∪θ3) = m(θ1)+m(θ2)+m(θ3)+m(θ1∪θ2)+m(θ1∪θ3)+m(θ2∪θ3)+m(θ1 ∪θ2∪θ3) = 1

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2










Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.2 + 0.1 + 0 + 0.2 = 0.5

Pl(θ2) = m(θ2) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0 + 0.1 + 0 + 0.2 = 0.3

Pl(θ3) = m(θ3) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.5 + 0 + 0 + 0.2 = 0.7











Pl(θ1 ∪ θ2) = Bel(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(Θ) = 0.5

Pl(θ1 ∪ θ3) = Bel(θ1 ∪ θ3) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(Θ) = 1

Pl(θ2 ∪ θ3) = Bel(θ2 ∪ θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(Θ) = 0.8

Pl(θ1 ∪ θ2 ∪ θ3) = m(θ1) +m(θ2) +m(θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 1

Pl(X) = 1−Bel(X̄)

m(θ1) = 0.2, m(θ3) = 0.7











Bel(θ1) = Pl(θ1) = 0.3

Bel(θ2) = Pl(θ2) = 0

Bel(θ3) = Pl(θ3) = 0.7











Bel(θ1 ∪ θ2) = Pl(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = Pl(θ1 ∪ θ3) = 1

Bel(θ2 ∪ θ3) = Pl(θ2 ∪ θ3) = 0.7

Bel(θ1 ∪ θ2 ∪ θ3) = Pl(θ1 ∪ θ2 ∪ θ3) = 1

BetP (θ1) = m(θ1) +
1

2
m(θ1 ∪ θ2) =

DSmPε=0.001(θ2) = m(θ2) +
m(θ2) + ε

m(θ1) +m(θ2) + 2ε
·m(θ1 ∪ θ2) = 0.2508































DSmPε=0.001(∅) = 0

DSmPε=0.001(θ1 ∩ θ2) = 0

DSmPε=0.001(θ1) = m(θ1) +
m(θ1)+ε

m(θ1)+m(θ2)+2ε ·m(θ1 ∪ θ2) = 0.7492

DSmPε=0.001(θ2) = m(θ2) +
m(θ2)+ε

m(θ1)+m(θ2)+2ε ·m(θ1 ∪ θ2) = 0.2508

DSmPε=0.001(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

With BetP

With DSmP

DSmP�(⇥i) = m(⇥i)

+ (m(⇥i) + �)
�

X⇧2�

X⌅⇥i
C(X)⇥2

m(X)�

Y ⇧2�

Y⇤X
C(Y )=1

m(Y ) + � · C(X)
(12)

The probabilities of (partial or total) ignorances are then
obtained from the additivity property of the probabilities of
elementary exclusive elements, i.e. for i, j = 1, . . . , n, i ⌅= j,
DSmP�(⇥i ⌥ ⇥j) = DSmP�(⇥i) + DSmP�(⇥j), etc.

VI. PIC METRIC FOR THE EVALUATION OF THE
TRANSFORMATIONS

Following Sudano’s approach [17], [18], [21], we adopt the
Probabilistic Information Content (PIC) criteria as a metric
depicting the strength of a critical decision by a specific
probability distribution which is an essential measure in any
threshold-driven automated decision system. The PIC value
is actually nothing but the dual of the normalized Shannon
entropy as we will show. A PIC value of one indicates the
total knowledge (i.e. minimal entropy) or information to make
a correct decision (one hypothesis has a probability value
of one and the rest of zero). A PIC value of zero indicates
that the knowledge or information to make a correct decision
does not exist (all the hypothesis have an equal probability
value), i.e. one has the maximal entropy. The PIC criteria will
be used in our analysis in order to compare and order the
performances of the different pignistic transformations through
several numerical examples in the next sections. We just briefly
recall here what Shannon entropy and PIC measure are and
their tight relationship.

A. Shannon entropy

Shannon entropy, usually expressed in bits (binary digits),
of a discrete probability measure P{.} over a discrete finite
set � = {⇥1, . . . , ⇥n} is defined by5 [12]:

H(P ) � �
n�

i=1

P{⇥i} log2(P{⇥i}) (13)

H(P ) measures the randomness/uncertainty carried by any
discrete probability measure P{.}. H(P ) is maximal for the
uniform probability measure over �, i.e. when P{⇥i} = 1/n
for i = 1, 2, . . . , n. In that case, one gets:

H(P ) = Hmax = �
n�

i=1

1
n

log2(
1
n

) = log2(n)

H(P ) is minimal for a totally deterministic probability
measure, i.e. for any P{.} such that P{⇥i} = 1 for some
i ⇤ {1, 2, . . . , n} and P{⇥j} = 0 for j ⌅= i.

5with common convention 0 log2 0 = 0, see [1].

B. The PIC metric

The Probabilistic Information Content (PIC) of a discrete
probability measure P{.} over a discrete finite set � =
{⇥1, . . . , ⇥n} is defined by [18]:

PIC(P ) = 1 +
1

Hmax
·

n�

i=1

P{⇥i} log2(P{⇥i}) (14)

The PIC metric is nothing but the dual of the normal-
ized Shannon entropy metric and thus is actually unitless. It
actually measures the Information content of a probabilistic
source characterized by the probability measure P{.}. The
PIC(P ) metric takes its values in [0, 1] and is maximum, i.e.
PIC(P ) = PICmax = 1 for any deterministic probability
measures. PIC(P ) = PICmin = 0 when the probability
measure is uniform over the frame �, i.e. P{⇥i} = 1/n for
i = 1, 2, . . . , n. The simple relationships between H(P ) and
PIC(P ) are :

PIC(P ) = 1� H(P )
Hmax

(15)

H(P ) = Hmax · (1� PIC(P )) (16)

VII. EXAMPLES ON A 2D FRAME

A. Example 1 (Shafer’s model and a general source)

Let’s consider the 2D frame � = {A, B} with Shafer’s
model (i.e. A � B = ⇧) and the non-Bayesian quantitative
belief assignments (mass) given in Table I. In this example
since one adopts Shafer’s mode for the frame �, G� coincides
with 2�, i.e. G� = 2� = {⇧, A,B, A ⌥B}.

A B A �B
m(.) 0.3 0.1 0.6

Table I
QUANTITATIVE INPUTS FOR EXAMPLE VII-A

• Classical pignistic probability:

BetP (A) = m(A) +
1
2
m(A ⌥B) = 0.3 + (0.6/2) = 0.60

BetP (B) = m(B) +
1
2
m(A ⌥B) = 0.1 + (0.6/2) = 0.40

Since we are working with Shafer’s model, the generalized
pignistic probability given by (3) coincides with the classical
pignistic probability measure.

• Sudano’s probabilities:
Applying Sudano’s probabilities formulas (4)-(8), one gets:
- Probability PrP l(.):

PrP l(A) = 0.9 · [0.3/0.9 + 0.6/(0.9 + 0.7)] = 0.6375
PrP l(B) = 0.7 · [0.1/0.7 + 0.6/(0.9 + 0.7)] = 0.3625

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2











Bel(θ1) = m(θ1) = 0.2

Bel(θ2) = m(θ2) = 0

Bel(θ3) = m(θ3) = 0.5











Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = m(θ1) +m(θ3) +m(θ1 ∪ θ3) = 0.7

Bel(θ2 ∪ θ3) = m(θ2) +m(θ3) +m(θ2 ∪ θ3) = 0.5

Bel(θ1∪θ2∪θ3) = Pl(θ1∪θ2∪θ3) = m(θ1)+m(θ2)+m(θ3)+m(θ1∪θ2)+m(θ1∪θ3)+m(θ2∪θ3)+m(θ1 ∪θ2∪θ3) = 1

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2










Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.2 + 0.1 + 0 + 0.2 = 0.5

Pl(θ2) = m(θ2) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0 + 0.1 + 0 + 0.2 = 0.3

Pl(θ3) = m(θ3) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.5 + 0 + 0 + 0.2 = 0.7











Pl(θ1 ∪ θ2) = Bel(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(Θ) = 0.5

Pl(θ1 ∪ θ3) = Bel(θ1 ∪ θ3) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(Θ) = 1

Pl(θ2 ∪ θ3) = Bel(θ2 ∪ θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(Θ) = 0.8

Pl(θ1 ∪ θ2 ∪ θ3) = m(θ1) +m(θ2) +m(θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 1

Pl(X) = 1−Bel(X̄)

m(θ1) = 0.2, m(θ3) = 0.7











Bel(θ1) = Pl(θ1) = 0.3

Bel(θ2) = Pl(θ2) = 0

Bel(θ3) = Pl(θ3) = 0.7











Bel(θ1 ∪ θ2) = Pl(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = Pl(θ1 ∪ θ3) = 1

Bel(θ2 ∪ θ3) = Pl(θ2 ∪ θ3) = 0.7

Bel(θ1 ∪ θ2 ∪ θ3) = Pl(θ1 ∪ θ2 ∪ θ3) = 1































BetP (∅) = 0

BetP (θ1 ∩ θ2) = 0

BetP (θ1) = m(θ1) + 1
2m(θ1 ∪ θ2) = 0.6

BetP (θ2) = m(θ2) +
1
2m(θ1 ∪ θ2) = 0.4

BetP (θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

θ1

θ2

θ3

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2











Bel(θ1) = m(θ1) = 0.2

Bel(θ2) = m(θ2) = 0

Bel(θ3) = m(θ3) = 0.5











Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = m(θ1) +m(θ3) +m(θ1 ∪ θ3) = 0.7

Bel(θ2 ∪ θ3) = m(θ2) +m(θ3) +m(θ2 ∪ θ3) = 0.5

Bel(θ1∪θ2∪θ3) = Pl(θ1∪θ2∪θ3) = m(θ1)+m(θ2)+m(θ3)+m(θ1∪θ2)+m(θ1∪θ3)+m(θ2∪θ3)+m(θ1 ∪θ2∪θ3) = 1

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2










Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.2 + 0.1 + 0 + 0.2 = 0.5

Pl(θ2) = m(θ2) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0 + 0.1 + 0 + 0.2 = 0.3

Pl(θ3) = m(θ3) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.5 + 0 + 0 + 0.2 = 0.7











Pl(θ1 ∪ θ2) = Bel(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(Θ) = 0.5

Pl(θ1 ∪ θ3) = Bel(θ1 ∪ θ3) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(Θ) = 1

Pl(θ2 ∪ θ3) = Bel(θ2 ∪ θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(Θ) = 0.8

Pl(θ1 ∪ θ2 ∪ θ3) = m(θ1) +m(θ2) +m(θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 1

Pl(X) = 1−Bel(X̄)

m(θ1) = 0.2, m(θ3) = 0.7











Bel(θ1) = Pl(θ1) = 0.3

Bel(θ2) = Pl(θ2) = 0

Bel(θ3) = Pl(θ3) = 0.7











Bel(θ1 ∪ θ2) = Pl(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = Pl(θ1 ∪ θ3) = 1

Bel(θ2 ∪ θ3) = Pl(θ2 ∪ θ3) = 0.7

Bel(θ1 ∪ θ2 ∪ θ3) = Pl(θ1 ∪ θ2 ∪ θ3) = 1































BetP (∅) = 0

BetP (θ1 ∩ θ2) = 0

BetP (θ1) = m(θ1) + 1
2m(θ1 ∪ θ2) = 0.6

BetP (θ2) = m(θ2) +
1
2m(θ1 ∪ θ2) = 0.4

BetP (θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

θ1

θ2

θ3

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2











Bel(θ1) = m(θ1) = 0.2

Bel(θ2) = m(θ2) = 0

Bel(θ3) = m(θ3) = 0.5











Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = m(θ1) +m(θ3) +m(θ1 ∪ θ3) = 0.7

Bel(θ2 ∪ θ3) = m(θ2) +m(θ3) +m(θ2 ∪ θ3) = 0.5

Bel(θ1∪θ2∪θ3) = Pl(θ1∪θ2∪θ3) = m(θ1)+m(θ2)+m(θ3)+m(θ1∪θ2)+m(θ1∪θ3)+m(θ2∪θ3)+m(θ1 ∪θ2∪θ3) = 1

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2










Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.2 + 0.1 + 0 + 0.2 = 0.5

Pl(θ2) = m(θ2) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0 + 0.1 + 0 + 0.2 = 0.3

Pl(θ3) = m(θ3) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.5 + 0 + 0 + 0.2 = 0.7











Pl(θ1 ∪ θ2) = Bel(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(Θ) = 0.5

Pl(θ1 ∪ θ3) = Bel(θ1 ∪ θ3) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(Θ) = 1

Pl(θ2 ∪ θ3) = Bel(θ2 ∪ θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(Θ) = 0.8

Pl(θ1 ∪ θ2 ∪ θ3) = m(θ1) +m(θ2) +m(θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 1

Pl(X) = 1−Bel(X̄)

m(θ1) = 0.2, m(θ3) = 0.7











Bel(θ1) = Pl(θ1) = 0.3

Bel(θ2) = Pl(θ2) = 0

Bel(θ3) = Pl(θ3) = 0.7











Bel(θ1 ∪ θ2) = Pl(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = Pl(θ1 ∪ θ3) = 1

Bel(θ2 ∪ θ3) = Pl(θ2 ∪ θ3) = 0.7

Bel(θ1 ∪ θ2 ∪ θ3) = Pl(θ1 ∪ θ2 ∪ θ3) = 1































BetP (∅) = 0

BetP (θ1 ∩ θ2) = 0

BetP (θ1) = m(θ1) + 1
2m(θ1 ∪ θ2) = 0.6

BetP (θ2) = m(θ2) +
1
2m(θ1 ∪ θ2) = 0.4

BetP (θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

θ1

θ2

θ1 ∪ θ2

Bigger entropy

Lower entropy

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2











Bel(θ1) = m(θ1) = 0.2

Bel(θ2) = m(θ2) = 0

Bel(θ3) = m(θ3) = 0.5











Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = m(θ1) +m(θ3) +m(θ1 ∪ θ3) = 0.7

Bel(θ2 ∪ θ3) = m(θ2) +m(θ3) +m(θ2 ∪ θ3) = 0.5

Bel(θ1∪θ2∪θ3) = Pl(θ1∪θ2∪θ3) = m(θ1)+m(θ2)+m(θ3)+m(θ1∪θ2)+m(θ1∪θ3)+m(θ2∪θ3)+m(θ1 ∪θ2∪θ3) = 1

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2










Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.2 + 0.1 + 0 + 0.2 = 0.5

Pl(θ2) = m(θ2) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0 + 0.1 + 0 + 0.2 = 0.3

Pl(θ3) = m(θ3) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.5 + 0 + 0 + 0.2 = 0.7











Pl(θ1 ∪ θ2) = Bel(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(Θ) = 0.5

Pl(θ1 ∪ θ3) = Bel(θ1 ∪ θ3) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(Θ) = 1

Pl(θ2 ∪ θ3) = Bel(θ2 ∪ θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(Θ) = 0.8

Pl(θ1 ∪ θ2 ∪ θ3) = m(θ1) +m(θ2) +m(θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 1

Pl(X) = 1−Bel(X̄)

m(θ1) = 0.2, m(θ3) = 0.7











Bel(θ1) = Pl(θ1) = 0.3

Bel(θ2) = Pl(θ2) = 0

Bel(θ3) = Pl(θ3) = 0.7











Bel(θ1 ∪ θ2) = Pl(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = Pl(θ1 ∪ θ3) = 1

Bel(θ2 ∪ θ3) = Pl(θ2 ∪ θ3) = 0.7

Bel(θ1 ∪ θ2 ∪ θ3) = Pl(θ1 ∪ θ2 ∪ θ3) = 1































BetP (∅) = 0

BetP (θ1 ∩ θ2) = 0

BetP (θ1) = m(θ1) + 1
2m(θ1 ∪ θ2) = 0.6

BetP (θ2) = m(θ2) +
1
2m(θ1 ∪ θ2) = 0.4

BetP (θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

θ1

θ2

θ3

H(BetP)=0.9710 bits

H(DSmP)=0.8125 bits

Shannon’s entropy

Shafer’s
model

Example for BetP and DSmP
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2001 - Jousselme’s distance - A strict metric proved in [Bouchard et al. in 2013]

1993 - Tessem’s distance  - Not a strict metric

Distances between two BBAs

[Han D., Dezert J., Yang Y., Belief interval Based Distances Measures in 
the Theory of Belief Functions, to appear in IEEE Trans. on SMC, 2017.]
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using Wasserstein’s distance of interval numbers

because belief intervals BI=[Bel(.),Pl(.]=[a,b] are just interval numbers. 

2014 - Euclidean belief interval based distance

2014 - Chebyshev belief interval based distance

[Han-Dezert-Yang 2014]

New distances between 2 BBAs
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result makes more sense because

seems not very reasonable (m2 makes no preference for choice, 
whereas m3 prefers the 3rd element)

Jousselme distance

Tessem’s (BetP) distance
not intuitively acceptable because m1 different of m2 but dT(m1,m2)=0.

New belief interval distances

Example

Example of distances results



38

Part 2

Decision-Making with Belief Functions
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Pessimistic attitude:   Max of Bel(.)

Optimistic attitude:   Max of Pl(.)

Compromise attitude: 

Use a probabilistic transformation to estimate a subjective proba 
measure P(.) in [Bel(.),Pl(.)]. Typically max of BetP, or max of DSmP. 

Decision-making with BF
Classical historical methods They don’t exploit all information
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New method based on distance

with Wasserstein’s distance of interval numbers

We use the following distance

Decision rule with its quality

[J. Dezert, D. Han, J.-M. Tacnet, S. Carladous, Y. Yang, Decision-Making with Belief 
Interval Distance, in Proc. of Belief 2016.]

Mass focused on X only

higher is q, better is the 
decision. q=1 is max if 
numerator is zero 
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General decision-making problem

Mono-criterion case

States of the nature

Alternatives
benefit/payoff matrix 

When probabilities are known, decision is done under risk.
When those probabilities becomes subjective, the prospect
theory (subjective expected utility theory - SEUT) [12] can
apply :

• the objective utility (e.g. cost) u(rk) is replaced by a
subjective function (value) denoted v(u(rk)) ;

• the objective weighting p(rk) is replaced by a subjective
function π(p(rk)).

v(·) is the felt subjective value in response of the expected
cost of the considered action, and π(·) is the felt weighting
face to the objective probability of the realisation of the result.
Prospect theory shows that the function v(·) is asymmetric:
loss causes a negative reaction intensity stronger than the pos-
itive reaction caused by the equivalent gain. This corresponds
to an aversion to risky choices in the area of earnings and a
search of risky choices in the area of loss.
In a MCDM context, information imperfection concerns

both the evaluation of the alternatives (in any context of
certainty, risk or ignorance) and the uncertainty or lack of
knowledge about the possible states of the world. Uncertainty
and imprecision in multi-criteria decision models has been
early considered [16]. Different kinds of uncertainty can be
considered: on the one hand the internal uncertainty is linked
to the structure of the model and the judgmental inputs re-
quired by the model, on the other hand the external uncertainty
refers to lack of knowledge about the consequences about a
particular choice.

B. Objectives and goals
Several decision support methods exist to consider both

information imperfection, sources heterogeneity, reliability,
conflict and the different states of the world when evaluating
the alternatives as summarized on figure 2. A more complete
review can be found in [28]. Here we just remind some
recent examples of methods mixing MCDM approaches and
Evidential Reasoning1(ER).

Figure 2. Information imperfection in the different decision support methods

• Dempster-Shafer-based AHP (DS-AHP) has introduced
a merging of Evidential Reasoning (ER) with Analytic

1Evidential Reasoning refers to the use of belief functions as theoretical
background, not to a specific theory of belief functions (BF) aimed for
combining, or conditioning BF. Actually, Dempster-Shafer Theory (DST) [21],
Dezert-Smarandache Theory (DSmT) [22], and Smets’ TBM [25] are different
approaches of Evidential Reasoning.

Hierachy Process (AHP) [19] to consider the imprecision
and the uncertainty in evaluation of several alternatives.
The idea is to consider criteria as sources [1], [3] and
derive weights as discounting factors in the fusion process
[5];

• Dezert-Smarandache-based (DSmT-AHP) [8] takes into
account the partial uncertainty (disjunctions) between
possible alternatives and introduces new fusion rules,
based on Proportional Conflict Redistribution (PCR) prin-
ciple, which allow to consider differences between impor-
tance and reliability of sources [23];

• ER-MCDA [28], [29] is based on AHP, fuzzy sets theory,
possibility theory and belief functions theory too. This
method considers both imperfection of criteria evalua-
tions, importance and reliability of sources.

Introducing ignorance and uncertainty in a MCDM process
consists in considering that consequences of actions (Ai)
depend of the state of nature represented by a finite set
S = {S1, S2, . . . , Sn}. For each state, the MCDM method
provides an evaluation Cij . We assume that this evaluation
Cij done by the decision maker corresponds to the choice
of Ai when Sj occurs with a given (possibly subjective)
probability. The evaluation matrix is defined as C = [Cij ]
where i = 1, . . . , q and j = 1, . . . , n.















S1 · · · Sj · · · Sn

A1 C11 · · · C11 · · · C1n
...

...
Ai Ci1 · · · Cij · · · Cin
...

...
Aq Cq1 · · · Cqj · · · Cqn















= C (2)

Existing methods using evidential reasoning and MCDM
have, up to now, focused on the case of imperfect evaluation
of alternatives in a context of decision under certainty. In
this paper, we propose a new method for decision under
uncertainty that mixes MCDM principles, decision under
uncertainty principles and evidential reasoning. For this
purpose, we propose a framework that considers uncertainty
and imperfection for scenarii corresponding to the state of
the world.

This paper is organized as follows. In section II, we
briefly recall the basis of DSmT. Section III presents two
existing methods for MCDM under uncertainty using belief
functions theory: DSmT-AHP as an extension of Saaty’s multi-
criteria decision method AHP , and Yager’s Ordered Weighted
Averaging (OWA) approach for decision making with belief
structures. The contribution of this paper concerns the section
IV where we describe an alternative to the classical OWA,
called cautious OWA method, where evaluations of alternatives
depend on more or less uncertain scenarii. The flexibility
and advantages of this COWA method are also discussed.
Conclusions and perspectives are given in section V.

How to select the best alternative A* given C matrix 
and the knowledge one has on the states of the nature?
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Decision frameworks

Decision under certainty

Decision under risk

If we know the true state of nature is Sj take

If we know all probas pj=P(Sj), then compute 
expected benefits

Decision under ignorance

difficult, because in general the reliability and importance discounting approaches do not commute, but when αi = βi = 1. In
order to deal both with reliabilities and importances factors and because of the non commutativity of these discountings, two
methods have also been proposed in [23] and not reported here.

B. Yager’s OWA approach
Let’s introduce Yager’s OWA approach [33] for decision making with belief structures. One considers a collection of q

alternatives belonging to a set A = {A1, A2, . . . , Aq} and a finite set S = {S1, S2, . . . , Sn} of states of the nature. We
assume that the payoff/gain Cij of the decision maker in choosing Ai when Sj occurs are given by positive (or null) numbers.
The payoffs q × n matrix is defined by C = [Cij ] where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The decision-making
problem consists in choosing the alternative A∗ ∈ A which maximizes the payoff to the decision maker given the knowledge
on the state of the nature and the payoffs matrix C. A∗ ∈ A is called the best alternative or the solution (if any) of the
decision-making problem. Depending the knowledge the decision-maker has on the states of the nature, he/she is face on
different decision-making problems:

1 – Decision-making under certainty: only one state of the nature is known and certain to occur, say Sj .

Then the decision-making solution consists in choosing

A∗ = Ai∗ with i∗ ! argmax
i

{Cij}

.

2 – Decision-making under risk: the true state of the nature is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this case, we use the maximum of expected values for decision-making.

For each alternative Ai, we compute its expected payoff

E[Ci] =
∑

j

pj · Cij

then we choose
A∗ = Ai∗ with i∗ ! argmax

i
{E[Ci]}

3 – Decision-making under ignorance: one assumes no knowledge about the true state of the nature but that it belongs to S.

Yager proposes to use the OWA operator assuming a given decision attitude taken by the decision-maker.

Given a set of values/payoffs c1, c2, ..., cn, OWA consists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑

j wj = 1 and for any set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn)
as

OWA(c1, c2, . . . , cn) =
∑

j

wj · bj

where bj is the jth largest element in the collection c1, c2, ..., cn.

OWA operator is a simple weighted average of ordered values of a variable.

For each alternative Ai, i = 1, . . . , q:
1) choose a weighting vector Wi = [wi1, wi2, . . . win]
2) compute its OWA value

Vi ! OWA(Ci1, Ci2, . . . , Cin) =
∑

j

wij · bij

where bij is the jth largest element in the collection of payoffs Ci1, Ci2,. . . , Cin.
3) as for decision-making under risk, choose

A∗ = Ai∗ with i∗ ! argmax
i

{Vi}

difficult, because in general the reliability and importance discounting approaches do not commute, but when αi = βi = 1. In
order to deal both with reliabilities and importances factors and because of the non commutativity of these discountings, two
methods have also been proposed in [23] and not reported here.

B. Yager’s OWA approach
Let’s introduce Yager’s OWA approach [33] for decision making with belief structures. One considers a collection of q

alternatives belonging to a set A = {A1, A2, . . . , Aq} and a finite set S = {S1, S2, . . . , Sn} of states of the nature. We
assume that the payoff/gain Cij of the decision maker in choosing Ai when Sj occurs are given by positive (or null) numbers.
The payoffs q × n matrix is defined by C = [Cij ] where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The decision-making
problem consists in choosing the alternative A∗ ∈ A which maximizes the payoff to the decision maker given the knowledge
on the state of the nature and the payoffs matrix C. A∗ ∈ A is called the best alternative or the solution (if any) of the
decision-making problem. Depending the knowledge the decision-maker has on the states of the nature, he/she is face on
different decision-making problems:

1 – Decision-making under certainty: only one state of the nature is known and certain to occur, say Sj .

Then the decision-making solution consists in choosing

A∗ = Ai∗ with i∗ ! argmax
i

{Cij}

.

2 – Decision-making under risk: the true state of the nature is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this case, we use the maximum of expected values for decision-making.

For each alternative Ai, we compute its expected payoff

E[Ci] =
∑

j

pj · Cij

then we choose
A∗ = Ai∗ with i∗ ! argmax

i
{E[Ci]}

3 – Decision-making under ignorance: one assumes no knowledge about the true state of the nature but that it belongs to S.

Yager proposes to use the OWA operator assuming a given decision attitude taken by the decision-maker.

Given a set of values/payoffs c1, c2, ..., cn, OWA consists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑

j wj = 1 and for any set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn)
as

OWA(c1, c2, . . . , cn) =
∑

j

wj · bj

where bj is the jth largest element in the collection c1, c2, ..., cn.

OWA operator is a simple weighted average of ordered values of a variable.

For each alternative Ai, i = 1, . . . , q:
1) choose a weighting vector Wi = [wi1, wi2, . . . win]
2) compute its OWA value

Vi ! OWA(Ci1, Ci2, . . . , Cin) =
∑

j

wij · bij

where bij is the jth largest element in the collection of payoffs Ci1, Ci2,. . . , Cin.
3) as for decision-making under risk, choose

A∗ = Ai∗ with i∗ ! argmax
i

{Vi}

If we don’t know probabilities pj=P(Sj), use Yager’s OWA 
(Ordered Weighted Averaging) approach (1988).

Decision under uncertainty
If we have only a BBA defined on the power-set 2S, where S={S1, S2,..., Sn}, 
Yager proposed extended OWA.

difficult, because in general the reliability and importance discounting approaches do not commute, but when αi = βi = 1. In
order to deal both with reliabilities and importances factors and because of the non commutativity of these discountings, two
methods have also been proposed in [23] and not reported here.

B. Yager’s OWA approach
Let’s introduce Yager’s OWA approach [33] for decision making with belief structures. One considers a collection of q

alternatives belonging to a set A = {A1, A2, . . . , Aq} and a finite set S = {S1, S2, . . . , Sn} of states of the nature. We
assume that the payoff/gain Cij of the decision maker in choosing Ai when Sj occurs are given by positive (or null) numbers.
The payoffs q × n matrix is defined by C = [Cij ] where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The decision-making
problem consists in choosing the alternative A∗ ∈ A which maximizes the payoff to the decision maker given the knowledge
on the state of the nature and the payoffs matrix C. A∗ ∈ A is called the best alternative or the solution (if any) of the
decision-making problem. Depending the knowledge the decision-maker has on the states of the nature, he/she is face on
different decision-making problems:

1 – Decision-making under certainty: only one state of the nature is known and certain to occur, say Sj .

Then the decision-making solution consists in choosing

A∗ = Ai∗ with i∗ ! argmax
i

{Cij}

.

2 – Decision-making under risk: the true state of the nature is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this case, we use the maximum of expected values for decision-making.

For each alternative Ai, we compute its expected payoff

E[Ci] =
∑

j

pj · Cij

then we choose
A∗ = Ai∗ with i∗ ! argmax

i
{E[Ci]}

3 – Decision-making under ignorance: one assumes no knowledge about the true state of the nature but that it belongs to S.

Yager proposes to use the OWA operator assuming a given decision attitude taken by the decision-maker.

Given a set of values/payoffs c1, c2, ..., cn, OWA consists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑

j wj = 1 and for any set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn)
as

OWA(c1, c2, . . . , cn) =
∑

j

wj · bj

where bj is the jth largest element in the collection c1, c2, ..., cn.

OWA operator is a simple weighted average of ordered values of a variable.

For each alternative Ai, i = 1, . . . , q:
1) choose a weighting vector Wi = [wi1, wi2, . . . win]
2) compute its OWA value

Vi ! OWA(Ci1, Ci2, . . . , Cin) =
∑

j

wij · bij

where bij is the jth largest element in the collection of payoffs Ci1, Ci2,. . . , Cin.
3) as for decision-making under risk, choose

A∗ = Ai∗ with i∗ ! argmax
i

{Vi}

and take

[R. Yager, On ordered weighted averaging operators in multi-criteria decision making, 
IEEE Trans. on SMC, 18:183–190, 1988.]
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Decision under ignorance

Yager’s OWA method pj=??? => P(Sj) are unknown

Step 1 (Decisional attitude) Choose a normalized set of weights
 wi1, ..., win with wi1 +...+ win=1

Step 2 (Evaluation) Compute the weighted average of ordered benefits for 
each row (alternative) i=1,2, ...q 

difficult, because in general the reliability and importance discounting approaches do not commute, but when αi = βi = 1. In
order to deal both with reliabilities and importances factors and because of the non commutativity of these discountings, two
methods have also been proposed in [23] and not reported here.

B. Yager’s OWA approach
Let’s introduce Yager’s OWA approach [33] for decision making with belief structures. One considers a collection of q

alternatives belonging to a set A = {A1, A2, . . . , Aq} and a finite set S = {S1, S2, . . . , Sn} of states of the nature. We
assume that the payoff/gain Cij of the decision maker in choosing Ai when Sj occurs are given by positive (or null) numbers.
The payoffs q × n matrix is defined by C = [Cij ] where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The decision-making
problem consists in choosing the alternative A∗ ∈ A which maximizes the payoff to the decision maker given the knowledge
on the state of the nature and the payoffs matrix C. A∗ ∈ A is called the best alternative or the solution (if any) of the
decision-making problem. Depending the knowledge the decision-maker has on the states of the nature, he/she is face on
different decision-making problems:

1 – Decision-making under certainty: only one state of the nature is known and certain to occur, say Sj .

Then the decision-making solution consists in choosing

A∗ = Ai∗ with i∗ ! argmax
i

{Cij}

.

2 – Decision-making under risk: the true state of the nature is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this case, we use the maximum of expected values for decision-making.

For each alternative Ai, we compute its expected payoff

E[Ci] =
∑

j

pj · Cij

then we choose
A∗ = Ai∗ with i∗ ! argmax

i
{E[Ci]}

3 – Decision-making under ignorance: one assumes no knowledge about the true state of the nature but that it belongs to S.

Yager proposes to use the OWA operator assuming a given decision attitude taken by the decision-maker.

Given a set of values/payoffs c1, c2, ..., cn, OWA consists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑

j wj = 1 and for any set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn)
as

OWA(c1, c2, . . . , cn) =
∑

j

wj · bj

where bj is the jth largest element in the collection c1, c2, ..., cn.

OWA operator is a simple weighted average of ordered values of a variable.

For each alternative Ai, i = 1, . . . , q:
1) choose a weighting vector Wi = [wi1, wi2, . . . win]
2) compute its OWA value

Vi ! OWA(Ci1, Ci2, . . . , Cin) =
∑

j

wij · bij

where bij is the jth largest element in the collection of payoffs Ci1, Ci2,. . . , Cin.
3) as for decision-making under risk, choose

A∗ = Ai∗ with i∗ ! argmax
i

{Vi}

bij is the jth largest element in the collection of benefit {Ci1, ... Cin}

difficult, because in general the reliability and importance discounting approaches do not commute, but when αi = βi = 1. In
order to deal both with reliabilities and importances factors and because of the non commutativity of these discountings, two
methods have also been proposed in [23] and not reported here.

B. Yager’s OWA approach
Let’s introduce Yager’s OWA approach [33] for decision making with belief structures. One considers a collection of q

alternatives belonging to a set A = {A1, A2, . . . , Aq} and a finite set S = {S1, S2, . . . , Sn} of states of the nature. We
assume that the payoff/gain Cij of the decision maker in choosing Ai when Sj occurs are given by positive (or null) numbers.
The payoffs q × n matrix is defined by C = [Cij ] where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The decision-making
problem consists in choosing the alternative A∗ ∈ A which maximizes the payoff to the decision maker given the knowledge
on the state of the nature and the payoffs matrix C. A∗ ∈ A is called the best alternative or the solution (if any) of the
decision-making problem. Depending the knowledge the decision-maker has on the states of the nature, he/she is face on
different decision-making problems:

1 – Decision-making under certainty: only one state of the nature is known and certain to occur, say Sj .

Then the decision-making solution consists in choosing

A∗ = Ai∗ with i∗ ! argmax
i

{Cij}

.

2 – Decision-making under risk: the true state of the nature is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this case, we use the maximum of expected values for decision-making.

For each alternative Ai, we compute its expected payoff

E[Ci] =
∑

j

pj · Cij

then we choose
A∗ = Ai∗ with i∗ ! argmax

i
{E[Ci]}

3 – Decision-making under ignorance: one assumes no knowledge about the true state of the nature but that it belongs to S.

Yager proposes to use the OWA operator assuming a given decision attitude taken by the decision-maker.

Given a set of values/payoffs c1, c2, ..., cn, OWA consists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑

j wj = 1 and for any set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn)
as

OWA(c1, c2, . . . , cn) =
∑

j

wj · bj

where bj is the jth largest element in the collection c1, c2, ..., cn.

OWA operator is a simple weighted average of ordered values of a variable.

For each alternative Ai, i = 1, . . . , q:
1) choose a weighting vector Wi = [wi1, wi2, . . . win]
2) compute its OWA value

Vi ! OWA(Ci1, Ci2, . . . , Cin) =
∑

j

wij · bij

where bij is the jth largest element in the collection of payoffs Ci1, Ci2,. . . , Cin.
3) as for decision-making under risk, choose

A∗ = Ai∗ with i∗ ! argmax
i

{Vi}Step 3 (Decision) Select

Alternatives

When probabilities are known, decision is done under risk.
When those probabilities becomes subjective, the prospect
theory (subjective expected utility theory - SEUT) [12] can
apply :

• the objective utility (e.g. cost) u(rk) is replaced by a
subjective function (value) denoted v(u(rk)) ;

• the objective weighting p(rk) is replaced by a subjective
function π(p(rk)).

v(·) is the felt subjective value in response of the expected
cost of the considered action, and π(·) is the felt weighting
face to the objective probability of the realisation of the result.
Prospect theory shows that the function v(·) is asymmetric:
loss causes a negative reaction intensity stronger than the pos-
itive reaction caused by the equivalent gain. This corresponds
to an aversion to risky choices in the area of earnings and a
search of risky choices in the area of loss.
In a MCDM context, information imperfection concerns

both the evaluation of the alternatives (in any context of
certainty, risk or ignorance) and the uncertainty or lack of
knowledge about the possible states of the world. Uncertainty
and imprecision in multi-criteria decision models has been
early considered [16]. Different kinds of uncertainty can be
considered: on the one hand the internal uncertainty is linked
to the structure of the model and the judgmental inputs re-
quired by the model, on the other hand the external uncertainty
refers to lack of knowledge about the consequences about a
particular choice.

B. Objectives and goals
Several decision support methods exist to consider both

information imperfection, sources heterogeneity, reliability,
conflict and the different states of the world when evaluating
the alternatives as summarized on figure 2. A more complete
review can be found in [28]. Here we just remind some
recent examples of methods mixing MCDM approaches and
Evidential Reasoning1(ER).
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• Dempster-Shafer-based AHP (DS-AHP) has introduced
a merging of Evidential Reasoning (ER) with Analytic

1Evidential Reasoning refers to the use of belief functions as theoretical
background, not to a specific theory of belief functions (BF) aimed for
combining, or conditioning BF. Actually, Dempster-Shafer Theory (DST) [21],
Dezert-Smarandache Theory (DSmT) [22], and Smets’ TBM [25] are different
approaches of Evidential Reasoning.

Hierachy Process (AHP) [19] to consider the imprecision
and the uncertainty in evaluation of several alternatives.
The idea is to consider criteria as sources [1], [3] and
derive weights as discounting factors in the fusion process
[5];

• Dezert-Smarandache-based (DSmT-AHP) [8] takes into
account the partial uncertainty (disjunctions) between
possible alternatives and introduces new fusion rules,
based on Proportional Conflict Redistribution (PCR) prin-
ciple, which allow to consider differences between impor-
tance and reliability of sources [23];

• ER-MCDA [28], [29] is based on AHP, fuzzy sets theory,
possibility theory and belief functions theory too. This
method considers both imperfection of criteria evalua-
tions, importance and reliability of sources.

Introducing ignorance and uncertainty in a MCDM process
consists in considering that consequences of actions (Ai)
depend of the state of nature represented by a finite set
S = {S1, S2, . . . , Sn}. For each state, the MCDM method
provides an evaluation Cij . We assume that this evaluation
Cij done by the decision maker corresponds to the choice
of Ai when Sj occurs with a given (possibly subjective)
probability. The evaluation matrix is defined as C = [Cij ]
where i = 1, . . . , q and j = 1, . . . , n.
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Existing methods using evidential reasoning and MCDM
have, up to now, focused on the case of imperfect evaluation
of alternatives in a context of decision under certainty. In
this paper, we propose a new method for decision under
uncertainty that mixes MCDM principles, decision under
uncertainty principles and evidential reasoning. For this
purpose, we propose a framework that considers uncertainty
and imperfection for scenarii corresponding to the state of
the world.

This paper is organized as follows. In section II, we
briefly recall the basis of DSmT. Section III presents two
existing methods for MCDM under uncertainty using belief
functions theory: DSmT-AHP as an extension of Saaty’s multi-
criteria decision method AHP , and Yager’s Ordered Weighted
Averaging (OWA) approach for decision making with belief
structures. The contribution of this paper concerns the section
IV where we describe an alternative to the classical OWA,
called cautious OWA method, where evaluations of alternatives
depend on more or less uncertain scenarii. The flexibility
and advantages of this COWA method are also discussed.
Conclusions and perspectives are given in section V.

[bi1,....bin] = reorder of ith row by decreasing values
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Best choice = A3

All alternatives have 
same score

Best choice = A3

Best choice = A2

(we take the min value per row)

(balance between min and max values per row)

Decision under ignorance (example)

pj=P(Sj) are unknown
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Decision under uncertainty

Step 2 (Evaluation) For each benefit subrow Mik associated to a focal 
element Xk of BBA m(.) compute the benefit of Vik of Ai by

Compute generalized expected benefits 

,
V2 = OWA(1, 10, 20, 30) = 30

and
V3 = OWA(30, 10, 2, 5) = 30

. All alternatives offer the same expected payoff and thus the final decision must be chosen randomly or purely ad-hoc since
there is no best alternative.
If one adopts the normative attitude in choosing

W1 = W2 = W3 = [1/4, 1/4, 1/4, 1/4]

(i.e. one assumes that all states of nature are equiprobable), then one gets:

V1 = OWA(10, 0, 20, 30) = 60/4

,
V2 = OWA(1, 10, 20, 30) = 61/4

and
V3 = OWA(30, 10, 2, 5) = 47/4

. The final decision will be the alternative V2 since it offers the best expected payoff.

4 – Decision-making under uncertainty: this corresponds to the general case where the knowledge on the states of the
nature is characterized by a belief structure.

One assumes a knowledge on the frame S of the different states of the nature is given by a bba m(.) : 2S → [0, 1]. This
case includes all previous cases depending on the choice of m(.). Decision under certainty is characterized by m(Sj) = 1;
Decision under risk is characterized by m(s) > 0 for some states s ∈ S; Decision under full ignorance is characterized by
m(S1 ∪ S2 ∪ . . . ∪ Sn) = 1, etc.

Yager’s OWA for decision-making under uncertainty combines the schemes used for decision making under risk and ignorance.
It is based on the derivation of a generalized expected value Ci of payoff for each alternative Ai as follows:

Ci =
r

∑

k=1

m(Xk)Vik

where r is the number of focal elements of the belief structure (S,m(.)).
m(Xk) is the mass of belief of the focal element Xk ∈ 2S , and Vik is the payoff we get when we select Ai and the state

of the nature lies in Xk.

The derivation of Vik is done similarly as for the decision making under ignorance when restricting the states of the nature
to the subset of states belonging to Xk only.

Therefore for Ai and a focal element Xk, instead of using all payoffs Cij , we consider only the payoffs in the set

Mik = {Cij |Sj ∈ Xk}

and
Vik = OWA(Mik)

for some decision-making attitude chosen a priori. Once generalized expected values Ci, i = 1, 2, . . . , q are computed, we
select the alternative which has its highest Ci as the best alternative (i.e. the final decision).

The principle of this method is very simple, but its implementation can be quite greedy in computational resources specially
if one wants to adopt a particular attitude for a given level of optimism, specially if the dimension of the frame S is large: one
needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [33] with a pessimistic, optimistic and normative attitudes.

3There is a mistake/typo error in original Yager’s example [33].
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Step 1 (Decisional attitude) Choose weights wi1, ..., win with wi1 +...+ win=1

Step 3 (Decision) Select

Yager’s OWA method We have only a BBA m(.) over 2S 
of states S={S1, S2,..., Sn} 

Alternatives

When probabilities are known, decision is done under risk.
When those probabilities becomes subjective, the prospect
theory (subjective expected utility theory - SEUT) [12] can
apply :

• the objective utility (e.g. cost) u(rk) is replaced by a
subjective function (value) denoted v(u(rk)) ;

• the objective weighting p(rk) is replaced by a subjective
function π(p(rk)).

v(·) is the felt subjective value in response of the expected
cost of the considered action, and π(·) is the felt weighting
face to the objective probability of the realisation of the result.
Prospect theory shows that the function v(·) is asymmetric:
loss causes a negative reaction intensity stronger than the pos-
itive reaction caused by the equivalent gain. This corresponds
to an aversion to risky choices in the area of earnings and a
search of risky choices in the area of loss.
In a MCDM context, information imperfection concerns

both the evaluation of the alternatives (in any context of
certainty, risk or ignorance) and the uncertainty or lack of
knowledge about the possible states of the world. Uncertainty
and imprecision in multi-criteria decision models has been
early considered [16]. Different kinds of uncertainty can be
considered: on the one hand the internal uncertainty is linked
to the structure of the model and the judgmental inputs re-
quired by the model, on the other hand the external uncertainty
refers to lack of knowledge about the consequences about a
particular choice.

B. Objectives and goals
Several decision support methods exist to consider both

information imperfection, sources heterogeneity, reliability,
conflict and the different states of the world when evaluating
the alternatives as summarized on figure 2. A more complete
review can be found in [28]. Here we just remind some
recent examples of methods mixing MCDM approaches and
Evidential Reasoning1(ER).

Figure 2. Information imperfection in the different decision support methods

• Dempster-Shafer-based AHP (DS-AHP) has introduced
a merging of Evidential Reasoning (ER) with Analytic

1Evidential Reasoning refers to the use of belief functions as theoretical
background, not to a specific theory of belief functions (BF) aimed for
combining, or conditioning BF. Actually, Dempster-Shafer Theory (DST) [21],
Dezert-Smarandache Theory (DSmT) [22], and Smets’ TBM [25] are different
approaches of Evidential Reasoning.

Hierachy Process (AHP) [19] to consider the imprecision
and the uncertainty in evaluation of several alternatives.
The idea is to consider criteria as sources [1], [3] and
derive weights as discounting factors in the fusion process
[5];

• Dezert-Smarandache-based (DSmT-AHP) [8] takes into
account the partial uncertainty (disjunctions) between
possible alternatives and introduces new fusion rules,
based on Proportional Conflict Redistribution (PCR) prin-
ciple, which allow to consider differences between impor-
tance and reliability of sources [23];

• ER-MCDA [28], [29] is based on AHP, fuzzy sets theory,
possibility theory and belief functions theory too. This
method considers both imperfection of criteria evalua-
tions, importance and reliability of sources.

Introducing ignorance and uncertainty in a MCDM process
consists in considering that consequences of actions (Ai)
depend of the state of nature represented by a finite set
S = {S1, S2, . . . , Sn}. For each state, the MCDM method
provides an evaluation Cij . We assume that this evaluation
Cij done by the decision maker corresponds to the choice
of Ai when Sj occurs with a given (possibly subjective)
probability. The evaluation matrix is defined as C = [Cij ]
where i = 1, . . . , q and j = 1, . . . , n.















S1 · · · Sj · · · Sn

A1 C11 · · · C11 · · · C1n
...

...
Ai Ci1 · · · Cij · · · Cin
...

...
Aq Cq1 · · · Cqj · · · Cqn















= C (2)

Existing methods using evidential reasoning and MCDM
have, up to now, focused on the case of imperfect evaluation
of alternatives in a context of decision under certainty. In
this paper, we propose a new method for decision under
uncertainty that mixes MCDM principles, decision under
uncertainty principles and evidential reasoning. For this
purpose, we propose a framework that considers uncertainty
and imperfection for scenarii corresponding to the state of
the world.

This paper is organized as follows. In section II, we
briefly recall the basis of DSmT. Section III presents two
existing methods for MCDM under uncertainty using belief
functions theory: DSmT-AHP as an extension of Saaty’s multi-
criteria decision method AHP , and Yager’s Ordered Weighted
Averaging (OWA) approach for decision making with belief
structures. The contribution of this paper concerns the section
IV where we describe an alternative to the classical OWA,
called cautious OWA method, where evaluations of alternatives
depend on more or less uncertain scenarii. The flexibility
and advantages of this COWA method are also discussed.
Conclusions and perspectives are given in section V.
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Best choice = A1

Pessimistic attitude One takes the min value by row

needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [?] with a pessimistic, optimistic and normative attitudes.
Example 2: Let’s take states S = {S1, S2, S3, S4, S5} with associated bba

m(S1 ∪ S3 ∪ S4) = 0.6

,
m(S2 ∪ S5) = 0.3

and
m(S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5) = 0.1

. Let’s also consider alternatives A = {A1, A2, A3, A4} and the payoffs matrix:

C =









7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4









(9)

The r = 3 focal elements of m(.) are
X1 = S1 ∪ S3 ∪ S4

,
X2 = S2 ∪ S5

and
X3 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5

. X1 and X2 are partial ignorances and X3 is the full ignorance. One considers the following submatrix (called bags by Yager)
for the derivation of Vik , for i = 1, 2, 3, 4 and k = 1, 2, 3.

M(X1) =









M11

M21

M31

M41









=









7 12 13
12 5 11
9 3 10
6 11 15









M(X2) =









M12

M22

M32

M42









=









5 6
10 2
13 9
9 4









M(X3) =









M13

M23

M33

M43









=









7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4









= C

• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:

V (X1) = [V11, V21, V31, V41]
t = [7, 5, 3, 6]t

,
V (X2) = [V12, V22, V32, V42]

t = [5, 2, 9, 4]t

and
V (X3). = [V13, V23, V33, V43]

t = [5, 2, 3, 4]t

. Applying formula (??) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:

[C1, C2, C3, C4]
t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.

3There is a mistake/typo error in original Yager’s example [?].
4where Xt denotes the transpose of X .
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entropy. As illustrative example, we take Yager’s example3 [?] with a pessimistic, optimistic and normative attitudes.
Example 2: Let’s take states S = {S1, S2, S3, S4, S5} with associated bba

m(S1 ∪ S3 ∪ S4) = 0.6

,
m(S2 ∪ S5) = 0.3

and
m(S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5) = 0.1

. Let’s also consider alternatives A = {A1, A2, A3, A4} and the payoffs matrix:
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
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
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The r = 3 focal elements of m(.) are
X1 = S1 ∪ S3 ∪ S4

,
X2 = S2 ∪ S5

and
X3 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5

. X1 and X2 are partial ignorances and X3 is the full ignorance. One considers the following submatrix (called bags by Yager)
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
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• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:
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t = [7, 5, 3, 6]t
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V (X2) = [V12, V22, V32, V42]

t = [5, 2, 9, 4]t

and
V (X3). = [V13, V23, V33, V43]

t = [5, 2, 3, 4]t

. Applying formula (??) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:

[C1, C2, C3, C4]
t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.

3There is a mistake/typo error in original Yager’s example [?].
4where Xt denotes the transpose of X .
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• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:

V (X1) = [V11, V21, V31, V41]
t = [7, 5, 3, 6]t

,
V (X2) = [V12, V22, V32, V42]

t = [5, 2, 9, 4]t

and
V (X3). = [V13, V23, V33, V43]

t = [5, 2, 3, 4]t

. Applying formula (III-B) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:









E[C1]
E[C2]
E[C3]
E[C4]









=
r=3
∑

k=1

m(Xk) · V (Xk) =









6.2
3.8
4.8
5.2









3There is a mistake/typo error in original Yager’s example [33].
4where Xt denotes the transpose of X .

W =


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Decision under uncertainty (ex. cont’d)
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Optimistic attitude One takes the max value by row

Best choice = A4Best choice = A4

[C1, C2, C3, C4]
t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.
• Using optimistic attitude, one takes the max value of each row, and applying OWA on each row of M(Xk) for k = 1 to

r, one gets:
V (X1) = [V11, V21, V31, V41]

t = [13, 12, 10, 15]t

,
V (X2) = [V12, V22, V32, V42]

t = [6, 10, 13, 9]t

, and
V (X3) = [V13, V23, V33, V43]

t = [13, 12, 13, 15]t

.








E[C1]
E[C2]
E[C3]
E[C4]









=
r=3
∑

k=1

m(Xk) · V (Xk) =









10.9
11.4
11.2
13.2









One finally gets
[C1, C2, C3, C4]

t = [10.9, 11.4, 11.2, 13.2]t

and the best alternative to take with optimistic attitude is A4 since it has the highest generalized expected payoff.
• Using normative attitude, one takes W1 = W2 = W3 = W4 = [1/|Xk|, 1/|Xk|, . . . , 1/|Xk|] where |Xk| is the cardinality

of the focal element Xk under consideration. The number of elements in Wi is equal to |Xk|. The generalized expected values
are

[C1, C2, C3, C4]
t = [8.91, 8.20, 8.58, 9.25]t

and the best alternative with the normative attitude is A4 (same as with optimistic attitude) since it has the highest generalized
expected payoff.

C. Using expected utility theory
In this section, we propose to use a much simpler approach than OWA Yager’s approach for decision making under uncertainty.

The idea is to approximate the bba m(.) by a subjective probability measure through a given probabilistic transformation. We
suggest to use either BetP or (better) DSmP transformations for doing this as explained in [22] (Vol.3, Chap. 3). Let’s take
back the previous example and compute the BetP (.) and DSmPε(.) values from m(.). One gets the same values in this
particular example for any ε > 0 because we don’t have singletons as focal elements of m(.), which is normal. Here

BetP (S1) = DSmP (S1) = 0.22

,
BetP (S2) = DSmP (S2) = 0.17

,
BetP (S3) = DSmP (S3) = 0.22

,
BetP (S4) = DSmP (S4) = 0.22

and
BetP (S5) = DSmP (S2) = 0.17

. Based on these probabilities, we can compute the expected payoffs for each alternative as for decision making under risk
(e.g. for C1, we get 7 · 0.22 + 5 · 0.17 + 12 · 0.22 + 13 · 0.22 + 6 · 0.17 = 8.91). For the 4 alternatives, we finally get:

EBetP [C] = EDSmP [C] = [8.91, 8.20, 8.58, 9.25]t

According to these values, one sees that the best alternative with this pignistic or DSm attitude is A4 (same as with Yager’s
optimistic or normative attitudes) since it offers the highest pignistic or DSm expected payoff. This much simpler approach
must be used with care however because there is a loss of information through the approximation of the bba m(.) into any
subjective probability measure. Therefore, we do not recommend to use it in general.

(A4 is also chosen
 with normative attitude)

needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [?] with a pessimistic, optimistic and normative attitudes.
Example 2: Let’s take states S = {S1, S2, S3, S4, S5} with associated bba

m(S1 ∪ S3 ∪ S4) = 0.6

,
m(S2 ∪ S5) = 0.3

and
m(S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5) = 0.1

. Let’s also consider alternatives A = {A1, A2, A3, A4} and the payoffs matrix:

C =









7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4









(9)

The r = 3 focal elements of m(.) are
X1 = S1 ∪ S3 ∪ S4

,
X2 = S2 ∪ S5

and
X3 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5

. X1 and X2 are partial ignorances and X3 is the full ignorance. One considers the following submatrix (called bags by Yager)
for the derivation of Vik , for i = 1, 2, 3, 4 and k = 1, 2, 3.

M(X1) =









M11

M21

M31

M41









=









7 12 13
12 5 11
9 3 10
6 11 15









M(X2) =









M12

M22

M32

M42









=









5 6
10 2
13 9
9 4









M(X3) =









M13

M23

M33

M43









=









7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4









= C

• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:

V (X1) = [V11, V21, V31, V41]
t = [7, 5, 3, 6]t

,
V (X2) = [V12, V22, V32, V42]

t = [5, 2, 9, 4]t

and
V (X3). = [V13, V23, V33, V43]

t = [5, 2, 3, 4]t

. Applying formula (??) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:

[C1, C2, C3, C4]
t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.

3There is a mistake/typo error in original Yager’s example [?].
4where Xt denotes the transpose of X .

needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [?] with a pessimistic, optimistic and normative attitudes.
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• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:

V (X1) = [V11, V21, V31, V41]
t = [7, 5, 3, 6]t

,
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t = [5, 2, 9, 4]t

and
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. Applying formula (??) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:

[C1, C2, C3, C4]
t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.

3There is a mistake/typo error in original Yager’s example [?].
4where Xt denotes the transpose of X .

needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [?] with a pessimistic, optimistic and normative attitudes.
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• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:

V (X1) = [V11, V21, V31, V41]
t = [7, 5, 3, 6]t

,
V (X2) = [V12, V22, V32, V42]

t = [5, 2, 9, 4]t

and
V (X3). = [V13, V23, V33, V43]

t = [5, 2, 3, 4]t

. Applying formula (??) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:

[C1, C2, C3, C4]
t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.

3There is a mistake/typo error in original Yager’s example [?].
4where Xt denotes the transpose of X .

Best choice = A4

W =


1
0

�

Decision under uncertainty (ex. cont’d)

Optimist decision
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Cautious OWA (COWA) method [Tacnet-Dezert 2011]

Drawbacks of Yager’s OWA approach
Result strongly depends on the decisional attitude. How to avoid this?

Use jointly the two most extreme attitudes (pessimistic and optimistic) 
to be more cautious.

Pessimistic and optimistic generalized expected benefits allow to 
build belief intervals, and to get BBAs that are combined with 
PCR6 to get combined BBA to take final decision..

Improvement of OWA method 

Solution

Fuzzy COWA method (simpler than COWA)
[Han D., Dezert J., Tacnet J.-M., Han C., A Fuzzy-Cautious OWA Approach with Evidential 
Reasoning, in Proc. Of Fusion 2012, Singapore, July 2012.]

[Tacnet J.-M., Dezert J., Cautious OWA and Evidential Reasoning for Decision Making under 
Uncertainty, in Proc. Of  Fusion 2011.]
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Part 3

Multi-Criteria Decision-Making Support

DSm-AHP
  BF-TOPSIS
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Classical AHP method

1) The multiple criteria are ordered in a hierarchy of importance. For 
each criterion, a set of preferences of the choice is established from 
pairwise comparison matrices. 

2) Combine these preferences to get the global ranking of the solutions.
(in classical AHP, this is done by the weighted arithmetic mean).

3) Final decision-making based on the result of step 2.

Principle of AHP

Analytic Hierarchy Process (AHP) is a Multi-criteria 
decision-making method developed by Thomas Saaty 
in 1980’s based on the derivation of priority from preferences. 

[T.L. Saaty,The Analytical Hierarchy Process,McGraw Hill, 1980.]
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1) Model the problem as a hierarchy containing the decision goal, the alterna-
tives for reaching it, and the criteria for evaluating the alternatives.
2) Establish priorities among the elements of the hierarchy by making a series
of judgments based on pairwise comparisons of the elements.
3) Check the consistency of the judgments and eventually revise the comparison
matrices by reasking the experts when the consistency in judgments is too low.
4) Synthesize these judgments to yield a set of overall priorities for the hierarchy.
5) Come to a final decision based on the results of this process.
Example 1: According to his/her own preferences and using the Saaty’s 1-9
ordinal scale, a DM wants to buy a car among four available models belonging
to the set
Example (Four cars and 3 criteria):

{Cars} = �= {A, B,C, D}
� = {A, B, C,D}. To simplify the example, we assume that the objective of

DM is to select one of these cars based only on three criteria (C1=Fuel economy,
C2=Reliability and C3=Style). According to his/her own preferences, the DM
ranks the di⇥erent criteria pairwise as follows: 1 - Reliability is 3 times as
important as fuel economy, 2 - Fuel economy is 4 times as important as style, 3
- Reliability is 5 times as important as style, which means that the DM thinks
that Reliability criteria (C2) is the most important criteria, followed by fuel
economy (C1) and style is the least important criteria2. The relative importance
of one criterion over another can be expressed using pairwise comparison matrix
(also called knowledge matrix) as follows:

M =
⇤

1/1 1/3 4/1
3/1 1/1 5/1
1/4 1/5 1/1

⌅
�

⇤
1.0000 0.3333 4.0000
3.0000 1.0000 5.0000
0.2500 0.2000 1.0000

⌅

where the element mij of the matrix M indicates the relative importance of
criteria Ci with respect to the criteria Cj. In this example, m13 = 4/1 indicates
that the criteria C1 (Fuel economy) is four times as important as the criteria C3
(Style) for the DM, etc. From this pairwise matrix, Saaty demonstrated that
the ranking of the priorities of the criteria can be obtained from the normalized
eigenvector3, denoted w, associated with the principal eigenvalue of the matrix,
denoted �. In this example, one has � = 3.0857 and w = [0.2797 0.6267 0.0936]�
which shows that C2 criterion (reliability) is the most important criterion with
the weight 0.6267, then the fuel economy criterion C1 is the second most im-
portant criterion with weight 0.2797, and finally C3 criterion (Style) is the least
important criterion with weight 0.0936 for the DM. A similar ranking procedure
can be used to find the relative weights of each car A, B, C or D with respect
to each criterion C1, C2 and C3 based on given DM preferences, hence one will
get three new normalized eigenvectors denoted w(C1), w(C2) and w(C3). By
example, if one has the following normalized vectors

[w(C1) w(C2) w(C3)] =
�

0.2500 0.4733 0.1129
0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

⇥

2The relationships between preferences given by a DM may not be transitive as shown in
this example, nevertheless one has to deal with these inputs even in such situations.

3Note that if the relationships on the criteria is transitive, then we can easily construct
the normalized vector of priorities from a system of algebraic equations, without employing
Saaty’s matrix approach. For example if in the previous example one assumes4 M23 = 12/1
and M32 = 1/12 instead of 5/1 and 1/5, then the normalized weighting vector will be directly
obtained as w = [4/17 12/17 1/17]�.

3

1) Model the problem as a hierarchy containing the decision goal, the alterna-
tives for reaching it, and the criteria for evaluating the alternatives.
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Example 1: According to his/her own preferences and using the Saaty’s 1-9
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DM is to select one of these cars based only on three criteria (C1=Fuel economy,
C2=Reliability and C3=Style). According to his/her own preferences, the DM
ranks the di⇥erent criteria pairwise as follows: 1 - Reliability is 3 times as
important as fuel economy, 2 - Fuel economy is 4 times as important as style, 3
- Reliability is 5 times as important as style, which means that the DM thinks
that Reliability criteria (C2) is the most important criteria, followed by fuel
economy (C1) and style is the least important criteria2. The relative importance
of one criterion over another can be expressed using pairwise comparison matrix
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M =
⇤

1/1 1/3 4/1
3/1 1/1 5/1
1/4 1/5 1/1

⌅
�
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where the element mij of the matrix M indicates the relative importance of
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w =

⇤

⇧
0.2797
0.6267
0.0936

⌅

⌃

which shows that C2 criterion (reliability) is the most important criterion
with the weight 0.6267, then the fuel economy criterion C1 is the second most
important criterion with weight 0.2797, and finally C3 criterion (Style) is the
least important criterion with weight 0.0936 for the DM. A similar ranking
procedure can be used to find the relative weights of each car A, B, C or D
with respect to each criterion C1, C2 and C3 based on given DM preferences,
hence one will get three new normalized eigenvectors denoted w(C1), w(C2)
and w(C3). By example, if one has the following normalized vectors

[w(C1) w(C2) w(C3)] =
�

0.2500 0.4733 0.1129
0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

⇥

then the solution of the MCDM problem (here the selection of the ”best” car
according to the DM multicriteria preferences) is finally obtained by multiplying
the matrix [w(C1) w(C2) w(C3] by the criteria ranking vector w. For this
example, one will get:

�
0.2500 0.4733 0.1129
0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

⇥
�

⌥
0.2797
0.6267
0.0936

�
=

�
0.3771
0.1163
0.2630
0.2436

⇥

Based on this result, the car A which has the most important weight (0.3771)
will be selected by the DM. The costs could also be included in AHP by tak-
ing into account the benefit to cost ratios which will allow to chose alterna-
tive with lowest cost and highest benefit. For example, let’s suppose that the
cost of car A is 21000 euros, the cost of car B is 13000 euros, the cost of
car C is 12000 euros and the cost of car D is 18000 euros, then the normal-
ized cost vector is [0.3281 0.2031 0.1875 0.2812]�, so that the benefit-cost ra-
tios are now [0.3771/0.3281 = 1.1492 0.1163/0.2031 = 0.5724 0.2630/0.1875 =
1.4026 0.2436/0.2812 = 0.8663]�. Taking into account now the cost of vehicles,
now the best solution for the DM is to choose the car C since it o�ers the highest
benefit-cost ratio.

In this paper we do not focus on the rank reversal problem of AHP as
discussed in [9, 10, 13, 18, 22], but we propose an extension of AHP using ag-
gregation method developed in DSmT framework, able to make a di�erence
between importance of criteria, uncertainty related to the evaluations of criteria
and reliability of the di�erent sources.
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Principle of DSm-AHP

1) Construction of uncertain comparison matrices. 
    Take as BBA, the normalized Perron-Frobenius vector of each matrix
2) Use PCR6, to combine BBA's to get a final priority ranking. 
3) Decision-making from combined result (max of Bel, Pl, BetP(.), 
DSmP, etc, or by min of distance).

DSm-AHP method

Extension of Analytic Hierarchy Process (AHP) with BF, 
PCR rules and importance discounting technique to take into 
account uncertainty (previous attempts by Beynon in 2000).

[Dezert J., Tacnet J.-M., Evidential Reasoning for Multi-Criteria Analysis based on DSmT-AHP,
Proc. of ISAHP 2011.]

[Dezert J, Tacnet J.-M., Batton-Hubert M., Smarandache F., Multi-criteria decision making 
based on DSmT/AHP, Proc. of Belief 2010.]



54

Importance discounting

for combining sources of di⇥erent importances in the framework of DSmT and
DST.

Before going further, it is essential to explain the di⇥erence between the
importance and the reliability of a source of evidence. The reliability is an
objective property of a source, whereas the importance of a source is a subjective
characteristic expressed by the fusion system designer. The reliability of a source
represents its ability to provide the correct assessment/solution of the given
problem. It is characterized by a discounting reliability factor, usually denoted
� in [0, 1], which should be estimated from statistics when available, or by other
techniques [11]. The reliability can be context-dependent. By convention, we
usually take � = 1 when the source is fully reliable and � = 0 if the source is
totally unreliable. The reliability of a source is usually taken into account with
Shafer’s discounting method [23] defined by:

(
m�(X) = � · m(X), for X ⇤= �

m�(�) = � · m(�) + (1� �)
(1)

The importance of a source is not the same as its reliability and it can
be characterized by an importance factor, denoted ⇥ in [0, 1] which represents
somehow the weight of importance granted to the source by the fusion system
designer. The choice of ⇥ is usually not related with the reliability of the source
and can be chosen to any value in [0, 1] by the designer for his/her own reason.
By convention, the fusion system designer will take ⇥ = 1 when he/she wants
to grant the maximal importance of the source in the fusion process, and will
take ⇥ = 0 if no importance at all is granted to this source in the fusion process.
The fusion designer must be able to deal with importance factors in a di⇥erent
way than with reliability factors since they correspond to distinct properties
associated with a source of information. The importance of a source is particu-
larly crucial in hierarchical multi-criteria decision making problems, specially in
the AHP [16, 20]. That’s why it is primordial to show how the importance can
be e⇧ciently managed in evidential reasoning approaches. The main question
we are concerned here is how to deal with di⇥erent importances of sources in
the fusion process in such a way that a clear distinction is made/preserved be-
tween reliability and importance? Our preliminary investigations for the search
of the solution of this problem were based on the self/auto-combination of the
sources. But such approach is very disputable and cannot be used satisfactorily
in practice whatever the fusion rule is adopted because it can be easily shown
that the auto-conflict tends quickly to 1 after several auto-fusions [11]. Actu-
ally a better approach can be used for taking into account the importances of
the sources and can be considered as the dual of Shafer’s discounting approach
for reliabilities of sources. The idea was originally introduced briefly by Tacnet
in [24], Vol.3, Chap. 23, p. 613. It consists to define the importance discount-
ing with respect to the empty set rather than the total ignorance � (as done
with Shafer’s discounting). Such new discounting deals easily with sources of
di⇥erent importances and is very simple to use. Mathematically, we define the
importance discounting of a source m(.) having the importance factor ⇥ in [0, 1]
by: (

m⇥(X) = ⇥ · m(X), for X ⇤= ⌅
m⇥(⌅) = ⇥ · m(⌅) + (1� ⇥)

(2)
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m�(�) = � · m(�) + (1� �)
(1)
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Reliability discounting Importance discounting

≠

ß factors = Importances of criteria

Here we allow to deal with non-normal bba since m�(⌅) � 0 as suggested by
Smets in [?]. This new discounting preserves the specificity of the primary
information since all focal elements are discounted with same importance factor.
Here we use the positive mass of the empty set as an intermediate/preliminary
step of the fusion process. Clearly when � = 1 is chosen by the fusion designer, it
will mean that the source must take its full importance in the fusion process and
so the original bba m(.) is kept unchanged. If the fusion designer takes � = 0,
one will deal with m�(⌅) = 1 which is interpreted as a fully non important
source. m(⌅) > 0 is not interpreted as the mass committed to some conflicting
information (classical interpretation), nor as the mass committed to unknown
elements when working with the open-world assumption (Smets interpretation),
but only as the mass of the discounted importance of a source in this particular
context. Based on this discounting, one adapts PCR5 (or PCR6) rule for N � 2
discounted bba’s m�,i(.), i = 1, 2, . . . N by considering the following extension,
denoted PCR5⇥, defined by:

⇤X ⇥ 2�

mPCR5�(X) =
�

X1,X2�2�

X1⇤X2=X

m1(X1)m2(X2)+
�

X2�2�

X2⇤X=⇥

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)
m2(X) + m1(X2)

]

10

Use importance discounting technique combined with non normalized
version of PCR5/6

then a classical normalization applies.
Note: Demspter’s rule doesn’t react to importance discounting!

Need for importance discounting

PCR5/6 fusion rules

[Smarandache F., Dezert J., Tacnet J.-M., Fusion of sources of evidence 
with different importances and reliabilities, Proc. Fusion 2010.]
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which would have provided the following result for decision-making
Elem. of � Bel(.) BetP (.) P l(.)

A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance discounting tech-
nique coupled with PCR5-based fusion rule (what we call the DSmT-AHP ap-
proach) will suggest, as with classical AHP, to choose the alternative A since
the car A has a bigger credibility (as well as a bigger pignistic probability and
plausibility) than cars B or C. It is however worth to note that the values of
Bel(.), BetP (.) and Pl(.) obtained by both methods are slightly di⇥erent. The
di⇥erence in results can have a strong impact in practice in the final result for
example if the costs of vehicles have also to be included in the final decision
(as explained at the end of the example 1). Note also that the uncertainties
U(X) = Pl(X) � Bel(X) of alternatives X = A, B, C have been seriously di-
minished when using DSmT-AHP with respect to what we obtain with classical
AHP as seen in the following table. The uncertainty reduction is a nice expected
property specially important for decision-making support.

Elem. of � U(.) with AHP U(.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

Important remark: If Dempster’s rule is used instead of PCR5⇥ rule, one
gets the following results when comparing the fusion of mC1(.) with mC2(.)
(i.e. without importance discounting) with the fusion of m�1=w1=0.25,C1(.) with
m�2=w2=0.75,C2(.) (i.e. with importance discounting of criteria C1 and C2):

Elem. of 2� mDS(.) mDS,w(.)
� 0 0
A 0.3588 0.3588
B 0.0908 0.0908

A ⇥ B 0.0642 0.0642
C 0.0918 0.0918

A ⇥ C 0.0649 0.0650
B ⇥ C 0.3294 0.3294

A ⇥ B ⇥ C 0 0

Clearly, Dempster’s rule cannot deal properly with importance discounted
bba’s as we have proposed in this work just because the importance discounting
technique preserves the specificity of the primary information and thus Demp-
ster’s rule does not make a di⇥erence in results when combining either mC1(.)
with mC2(.) or when combining m�1 �=1,C1(.) with m�2 �=1,C2(.) due to the way
of processing of the total conflicting mass of belief. PRC5 deals more e⇧ciently
with importance discounted bba’s as we have shown in this example. So it is not
surprising that such discounting technique has never been proposed and used
in DST framework and this explains why only the classical Shafer’s discounting
technique (the reliability discounting) is generally adopted. By using Demp-
ster’s rule, the fusion designer has no other choice but to consider importance
and reliability as same notions ! The DSmT framework with PCR5 (or PCR6)
rule and the importance discounting technique proposed here provides an inter-
esting and simple solution for the fusion of sources with di⇥erent importances
which makes a clear distinction between importances and reliabilities of sources.

Example (Three cars and 2 criteria):

{Cars} = � = {A, B, C}

6
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6
{Criteria} = {C1 = Fuel economy, C2 = Reliability}

1 DSmT-AHP for solving MCGDM

Previously, a new approach mixing AHP with DSmT solving MCDM problem
has been presented. In many practical situations however, the decision must
be taken by a group of n > 1 Decision Makers (GDM), denoted GDM =
{DMi, i = 1, 2, . . . , n}, rather than a single DM, and from the Multi-Criteria
preference rankings of the DMi’s. The importance (influence) of each member
of the GDM is usually non-equivalent [1] and the importance of each DM of the
GDM must be e⌅ciently taken into account in the final decision-making process.
Let’s denote by mDMi(.) the result of DSmT-AHP approach (see section ??)
related with DMi ⇥ GDM . The MCGDM problem consists in combining all
opinions/preferences rankings mDMi(.), i = 1, . . . , n with their own (possibly
di�erent) importances. When all DMi’s have equal importance, the classical
fusion rules1 � for combining mDMi(.) can be directly used to get the final
result mMCGDM (.) = [mDM1 � mDM2 � . . . � mDMn ](.); If the DMi’s have
di�erent importance weights wi, the DSmT-AHP approach can also be used
at the GDM fusion level using the importance discounting approach presented
here. The result for group decision-making is given by the PCR5� fusion of
m�i,DMi(.), with �i = wi and then the result must be normalized for decision
making support. In [6], Beynon used the classical discounting technique [23] to
readjust mDMi(.) with wi’s and he identified the importance factors with the
reliability factors. In our opinions, this is disputable since importance of a DMi

is not necessarily related with its reliability but rather with the importance in the
problem of the choice of his/her Multi-Criteria to establish his/her ranking, or it
can come from other (political, hierarchical, etc.) reasons. In our new approach,
we make a clear distinction between notions of importance and reliability and
both notions can be easily taken into account [25] with DSmT-AHP for solving
MCGDM problems, i.e. we can use the classical discounting technique for taking
into the reliabilities of the sources, and use the importance discounting proposed
here for dealing with the importances of sources.

2 Conclusions and perspectives

In this paper, we have presented a new method for Multi-Criteria Decision-
Making (MCDM) and Multi-Criteria Group Decision-Making (MCGDM) based
on the combination of AHP method developed by Saaty and DSmT. The AHP
method allows to build bba’s from DM preferences of solutions which are estab-
lished with respect to several criteria. The DSmT allows to aggregate e⌅ciently
the (possibly highly conflicting) bba’s based on each criterion. This DSmT-AHP
method allows to take into account also the di�erent importances of the criteria
and/or of the di�erent members of the decision-makers group. The application
of this DSmT-AHP approach for the prevention of natural hazards in mountains
is currently under progress, see [24], Vol.3, Chap. 23, and [27].

1typically the PCR5 or PCR6 rules, or eventually Dempster’s rule if the conflict between
DMi’s is low.
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Example 2: Let’s consider now a set of three cars � = {A, B,C} and the
criteria C1=Fuel Economy, C2=Reliability. Let’s assume that with respect to
each criterion the following ”uncertain” knowledge matrices are given:

M(C1) =
�

A B ⇥ C �
A 1 0 1/3

B ⇥ C 0 1 2
� 3 1/2 1

⇥

M(C2) =

⇤
A B A ⇥ C B ⇥ C

A 1 2 4 3
B 1/2 1 1/2 1/5

A ⇥ C 1/4 2 1 0
B ⇥ C 1/3 5 0 1

⌅

Step 1: (bba’s generation) Applying AHP method, one gets the following prior-
ity vectors w(C1) � [0.0889 0.5337 0.3774]� and w(C2) � [0.5002 0.1208 0.1222 0.2568]�
which are identified with the bba’s mC1(.) and mC2(.) as follows: mC1(A) =
0.0889, mC1(B⇥C) = 0.5337, mC1(A⇥B⇥C) = 0.3774 and mC2(A) = 0.5002,
mC2(B) = 0.1208, mC2(A ⇥ C) = 0.1222 and mC2(B ⇥ C) = 0.2568.
Step 2: (Fusion) When the two criteria have the same full importance in the
hierarchy they are fused with one of the classical fusion rules. In [4] Beynon
proposed to use Dempster’s rule. Here we propose to use the PCR5 fusion rule
since it is known to have a better ability to deal e⇧ciently with possibly highly
conflicting sources of evidences [24], Vol. 2. With PCR5, one gets:

Elem. of 2� mC1(.) mC2(.) mP CR5(.)
� 0 0 0
A 0.0889 0.5002 0.3837
B 0 0 0.1162

A ⇥ B 0 0.1208 0
C 0 0 0.0652

A ⇥ C 0 0.1222 0.0461
B ⇥ C 0.5337 0.2568 0.3887

A ⇥ B ⇥ C 0.3774 0 0

Step 3: (Decision-making) A final decision based on mPCR5(.) must be taken.
Usually, the decision-maker (DM) is concerned with a single choice among the
elements of �. Many decision-making approaches are possible depending on the
risk the DM is ready to take. A pessimistic DM will choose the singleton of
� giving the maximum of credibility whereas an optimistic DM will choose the
element having the maximum of plausibility. A fair attitude consists usually
in choosing the maximum of approximate subjective probability of elements of
�. The result however is very dependent on the probabilistic transformation
(Pignistic, DSmP, Sudano’s, etc) [24], Vol. 2. Below are the values of the
credibility, the pignistic probability and the plausibility of A, B and C:

Elem. of � Bel(.) BetP (.) P l(.)
A 0.3837 0.4068 0.4298
B 0.1162 0.3105 0.5049
C 0.0652 0.2826 0.5000

The car A will be preferred with the pessimistic or pignistic attitudes, whereas
the car B will be preferred if an optimistic attitude is adopted since one has
Pl(B) > Pl(C) > Pl(A).

The MCDM problem deals with several criteria having di⇥erent importances
and the classical fusion rules cannot be applied directly as in step 2. In AHP,
the fusion is done from the product of the bba’s matrix with the weighting
vector of criteria. Such AHP fusion is nothing but a simple componentwise
weighted average of bba’s and it doesn’t actually process e⇧ciently the conflict-
ing information between the sources. It doesn’t preserve the neutrality of a full
ignorant source in the fusion. To palliate these problems, we propose a solution
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Example 2: Let’s consider now a set of three cars � = {A, B,C} and the
criteria C1=Fuel Economy, C2=Reliability. Let’s assume that with respect to
each criterion the following ”uncertain” knowledge matrices are given:

M(C1) =
�

A B � C �
A 1 0 1/3

B � C 0 1 2
� 3 1/2 1

⇥

M(C2) =

⇤
A B A � C B � C

A 1 2 4 3
B 1/2 1 1/2 1/5

A � C 1/4 2 1 0
B � C 1/3 5 0 1

⌅

Step 1: (bba’s generation) Applying AHP method, one gets the following pri-
ority vectors

w(C1) �

⇧

⌥
0.0889
0.5337
0.3774

⌃

�

w(C2) �

⇧

  ⌥

0.5002
0.1208
0.1222
0.2568

⌃

⌦⌦�

which are identified with the bba’s mC1(.) and mC2(.) as follows: mC1(A) =
0.0889, mC1(B⇥C) = 0.5337, mC1(A⇥B⇥C) = 0.3774 and mC2(A) = 0.5002,
mC2(B) = 0.1208, mC2(A ⇥ C) = 0.1222 and mC2(B ⇥ C) = 0.2568.

1

Multi-criteria decision making based on
DSmT-AHP

Jean Dezert Jean-Marc Tacnet
The French Aerospace Lab. CEMAGREF
Information Fusion Systems Unité Etna
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criterion is the stable normalized eigenvector associated
with the largest eigenvalue of the ”uncertain” stable
knowledge matrix (as done in standard AHP approach).

• Step 2: We use the DSmT fusion rules, typically the
PCR5 rule, to combine bba’s drawn from step 1 to get a
final MCDM priority ranking. This fusion step must take
into account the different importances (if any) of criteria
as it will be explained in the sequel.

• Step 3: Decision-making can be done based either on the
maximum of belief, or on the maximum of the plausibility
of Decision alternatives (DA), as well as on the maximum
of the approximate subjective probability of DA obtained
by different probabilistic transformations (say Pignistic,
DSmP, or Sudano’s, etc [23], Vol. 2).

Example 2: Let’s consider now a set of three cars Θ =
{A, B, C} and the criteria C1=Fuel Economy, C2=Reliability.
Let’s assume that with respect to each criterion the following
”uncertain” knowledge matrices are given:

M(C1) =






A B ∪ C Θ
A 1 0 1/3

B ∪ C 0 1 2
Θ 3 1/2 1






M(C2) =







A B A ∪ C B ∪ C
A 1 2 4 3
B 1/2 1 1/2 1/5

A ∪ C 1/4 2 1 0
B ∪ C 1/3 5 0 1







Step 1: (bba’s generation) Applying the AHP method, one
will get as normalized stable eigenvectors associated with
largest eigenvalues of the sequence of power raised uncertain
knowledge matrices, the following priority vectors:

w̃(C1) ≈ [0.0889 0.5337 0.3774]′

w̃(C2) ≈ [0.5002 0.1208 0.1222 0.2568]′

which are identified with the bba’s mC1(.) and mC2(.) as
follows:mC1(A) = 0.0889,mC1(B∪C) = 0.5337,mC1(A∪
B ∪C) = 0.3774 and mC2(A) = 0.5002, mC2(B) = 0.1208,
mC2(A ∪ C) = 0.1222 and mC2(B ∪ C) = 0.2568.
Step 2: (Fusion) When the two criteria have the same im-
portance in the hierarchy they are fused with classical fusion
rules for combining bba’s. Typically, Beynon proposed to use
Dempster’s rule in [4]. We propose here using PCR5 rule of
combination of DSmT since is known to have a better ability
to deal efficiently with possibly highly conflicting sources of
evidences [23], Vol. 2. Therefore in this example, one will
get the following result for the combination of mC1(.) with
mC2(.) based on PCR5:

Elem. of 2Θ mC1(.) mC2(.) mPCR5(.)
∅ 0 0 0
A 0.0889 0.5002 0.3837
B 0 0 0.1162

A ∪ B 0 0.1208 0
C 0 0 0.0652

A ∪ C 0 0.1222 0.0461
B ∪ C 0.5337 0.2568 0.3887

A ∪ B ∪ C 0.3774 0 0

Step 3: (Decision-making) Once the combined/fusioned result
mPCR5(.) taking into account the preference rankings with
repect to all criteria has been derived, a final decision based
on mPCR5(.) must be taken. Usually, the decision-maker is
concerned with a single choice among the elements of Θ, here
the choice of a particular car among A, B or C. For such
purpose, many approaches can be taken depending on the risk
the DM is ready to take. From the pessimistic point of view,
DM can choose the elements which gives the maximum of
credibility. If an optimistic attitude is preferred, then his/her
choice will be governed by the maximum of plausibility of
the elements of Θ. Usually as a fair compromise between both
attitudes, the maximum of approximate subjective probability
of elements of Θ is adopted. The result however is very de-
pendent on the probabilistic transformation chosen (Pignistic,
DSmP, Sudano’s, etc) as shown in [23], Vol. 2. In this example,
one gets for the credibility, the pignistic probability and the
plausibility of A, B and C the following values:

Elem. of Θ Bel(.) BetP (.) P l(.)
A 0.3837 0.4068 0.4298
B 0.1162 0.3105 0.5049
C 0.0652 0.2826 0.5000

One sees that in this example, the car A will be
preferred/chosen with the pessimistic or pignistic attitudes,
whereas the car B will be preferred if an optimistic attitude
is adopted since one has Pl(B) > Pl(C) > Pl(A).

As already mentioned, the MCDM problem requires
generally to take into account several criteria which don’t
have the same importance and therefore the classical fusion
rules for bba’s cannot be applied directly as presented in step
2. In the classical AHP method, this is done by the simple
product of the Bayesian bba’s matrix by the weighting vector
of criteria as explained at the end of example 1. Of course,
the same approach can also be used to ”combine” bba’s for
criteria having different importances. In such case, there is
no need to use sophisticated rules of combination. However
this classical AHP fusion for different importance criteria is
nothing but a simple componentwise weighted average of
bba’s and it doesn’t actually process efficiently the conflicting
information between the sources, and it doesn’t preserve the
neutrality of a full ignorant source in the fusion (if any). That
is why we propose here another way for combining sources
of different importances in the framework of DSmT, or DST.
To take into account the different importances of sources, say
if the source 2 is three times more important than the source
1, we propose to combine the bba m1(.) of the source 1 with
bba’s m2(.) of the source 2 combined three times by itself,
which can be written as Fusion1 = [m1⊕m2⊕m2⊕m2](.)
where ⊕ symbol represents the generic fusion operator,
typically PCR5 rule, or Dempster’s rule if the classical
DST is preferred. If the fusion operator ⊕ is not associative
(like PCR5 fusion rule), the fusion should be done with
the masses altogether. Such ”optimal” implementation of
non associative fusion operators is usually difficult and a

We need to fuse these bba’s taking into account the importances of criterion C1 and C2

DSm-AHP example
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Case 1: If C1 and C2 have same full importance (ß1=ß2=1), we fuse with PCR5/PCR6

Step 2: (Fusion) When the two criteria have the same full importance in the
hierarchy they are fused with one of the classical fusion rules. In [4] Beynon
proposed to use Dempster’s rule. Here we propose to use the PCR5 fusion rule
since it is known to have a better ability to deal e⇧ciently with possibly highly
conflicting sources of evidences [24], Vol. 2. With PCR5, one gets:

Elem. of 2� mC1(.) mC2(.) mP CR5(.)
� 0 0 0
A 0.0889 0.5002 0.3837
B 0 0 0.1162

A ⇥ B 0 0.1208 0
C 0 0 0.0652

A ⇥ C 0 0.1222 0.0461
B ⇥ C 0.5337 0.2568 0.3887

A ⇥ B ⇥ C 0.3774 0 0

Step 3: (Decision-making) A final decision based on mPCR5(.) must be taken.
Usually, the decision-maker (DM) is concerned with a single choice among the
elements of �. Many decision-making approaches are possible depending on the
risk the DM is ready to take. A pessimistic DM will choose the singleton of
� giving the maximum of credibility whereas an optimistic DM will choose the
element having the maximum of plausibility. A fair attitude consists usually
in choosing the maximum of approximate subjective probability of elements of
�. The result however is very dependent on the probabilistic transformation
(Pignistic, DSmP, Sudano’s, etc) [24], Vol. 2. Below are the values of the
credibility, the pignistic probability and the plausibility of A, B and C:

Elem. of � Bel(.) BetP (.) P l(.)
A 0.3837 0.4068 0.4298
B 0.1162 0.3105 0.5049
C 0.0652 0.2826 0.5000

The car A will be preferred with the pessimistic or pignistic attitudes, whereas
the car B will be preferred if an optimistic attitude is adopted since one has
Pl(B) > Pl(C) > Pl(A).

The MCDM problem deals with several criteria having di⇥erent importances
and the classical fusion rules cannot be applied directly as in step 2. In AHP,
the fusion is done from the product of the bba’s matrix with the weighting
vector of criteria. Such AHP fusion is nothing but a simple componentwise
weighted average of bba’s and it doesn’t actually process e⇧ciently the conflict-
ing information between the sources. It doesn’t preserve the neutrality of a full
ignorant source in the fusion. To palliate these problems, we propose a solution
for combining sources of di⇥erent importances in the framework of DSmT and
DST.

Before going further, it is essential to explain the di⇥erence between the
importance and the reliability of a source of evidence. The reliability is an
objective property of a source, whereas the importance of a source is a subjective
characteristic expressed by the fusion system designer. The reliability of a source
represents its ability to provide the correct assessment/solution of the given
problem. It is characterized by a discounting reliability factor, usually denoted
� in [0, 1], which should be estimated from statistics when available, or by other
techniques [11]. The reliability can be context-dependent. By convention, we
usually take � = 1 when the source is fully reliable and � = 0 if the source is
totally unreliable. The reliability of a source is usually taken into account with
Shafer’s discounting method [23] defined by:

(
m�(X) = � · m(X), for X ⇤= �

m�(�) = � · m(�) + (1� �)
(1)

2

Case 2: C1 and C2 have different importances

Many decision-making approaches are possible depending on
the risk the DM is ready to take. A pessimistic DM will
choose the singleton of Θ giving the maximum of credibility
whereas an optimistic DM will choose the element having the
maximum of plausibility. A fair attitude consists usually in
choosing the maximum of approximate subjective probability
of elements of Θ. The result however is very dependent on
the probabilistic transformation (Pignistic, DSmP, Sudano’s,
etc) [24], Vol. 2. Below are the values of the credibility, the
pignistic probability and the plausibility of A, B and C:

Elem. of Θ Bel(.) BetP (.) P l(.)
A 0.3837 0.4068 0.4298
B 0.1162 0.3105 0.5049
C 0.0652 0.2826 0.5000

The car A will be preferred with the pessimistic or pignistic
attitudes, whereas the car B will be preferred if an optimistic
attitude is adopted since one has Pl(B) > Pl(C) > Pl(A).
The MCDM problem deals with several criteria having

different importances and the classical fusion rules cannot
be applied directly as in step 2. In AHP, the fusion is done
from the product of the bba’s matrix with the weighting
vector of criteria. Such AHP fusion is nothing but a simple
componentwise weighted average of bba’s and it doesn’t
actually process efficiently the conflicting information between
the sources. It doesn’t preserve the neutrality of a full ignorant
source in the fusion. To palliate these problems, we propose
a solution for combining sources of different importances in
the framework of DSmT and DST.
Before going further, it is essential to explain the difference

between the importance and the reliability of a source of
evidence. The reliability is an objective property of a source,
whereas the importance of a source is a subjective character-
istic expressed by the fusion system designer. The reliability
of a source represents its ability to provide the correct as-
sessment/solution of the given problem. It is characterized by
a discounting reliability factor, usually denoted α in [0, 1],
which should be estimated from statistics when available,
or by other techniques [11]. The reliability can be context-
dependent. By convention, we usually take α = 1 when the
source is fully reliable and α = 0 if the source is totally
unreliable. The reliability of a source is usually taken into
account with Shafer’s discounting method [23] defined by:

(

mα(X) = α · m(X), for X != Θ

mα(Θ) = α · m(Θ) + (1 − α)
(2)

The importance of a source is not the same as its reliability
and it can be characterized by an importance factor, denoted β
in [0, 1] which represents somehow the weight of importance
granted to the source by the fusion system designer. The choice
of β is usually not related with the reliability of the source
and can be chosen to any value in [0, 1] by the designer
for his/her own reason. By convention, the fusion system
designer will take β = 1 when he/she wants to grant the
maximal importance of the source in the fusion process, and
will take β = 0 if no importance at all is granted to this
source in the fusion process. The fusion designer must be able
to deal with importance factors in a different way than with

reliability factors since they correspond to distinct properties
associated with a source of information. The importance of
a source is particularly crucial in hierarchical multi-criteria
decision making problems, specially in the AHP [16], [20].
That’s why it is primordial to show how the importance can
be efficiently managed in evidential reasoning approaches.
The main question we are concerned here is how to deal
with different importances of sources in the fusion process in
such a way that a clear distinction is made/preserved between
reliability and importance? Our preliminary investigations for
the search of the solution of this problem were based on the
self/auto-combination of the sources. But such approach is
very disputable and cannot be used satisfactorily in practice
whatever the fusion rule is adopted because it can be easily
shown that the auto-conflict tends quickly to 1 after several
auto-fusions [11]. Actually a better approach can be used for
taking into account the importances of the sources and can
be considered as the dual of Shafer’s discounting approach
for reliabilities of sources. The idea was originally introduced
briefly by Tacnet in [24], Vol.3, Chap. 23, p. 613. It consists
to define the importance discounting with respect to the
empty set rather than the total ignorance Θ (as done with
Shafer’s discounting). Such new discounting deals easily with
sources of different importances and is very simple to use.
Mathematically, we define the importance discounting of a
source m(.) having the importance factor β in [0, 1] by:

(

mβ(X) = β · m(X), for X != ∅

mβ(∅) = β · m(∅) + (1 − β)
(3)

Here we allow to deal with non-normal bba since mβ(∅) ≥ 0
as suggested by Smets in [26]. This new discounting pre-
serves the specificity of the primary information since all
focal elements are discounted with same importance factor.
Here we use the positive mass of the empty set as an
intermediate/preliminary step of the fusion process. Clearly
when β = 1 is chosen by the fusion designer, it will mean
that the source must take its full importance in the fusion
process and so the original bba m(.) is kept unchanged.
If the fusion designer takes β = 0, one will deal with
mβ(∅) = 1 which is interpreted as a fully non important
source. m(∅) > 0 is not interpreted as the mass committed
to some conflicting information (classical interpretation), nor
as the mass committed to unknown elements when working
with the open-world assumption (Smets interpretation), but
only as the mass of the discounted importance of a source in
this particular context. Based on this discounting, one adapts
PCR5 (or PCR6) rule for N ≥ 2 discounted bba’s mβ,i(.),
i = 1, 2, . . .N by considering the following extension, denoted
PCR5∅, defined by: ∀X ∈ 2Θ

mPCR5∅
(X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
] (4)

Final decision based on max of

1) Model the problem as a hierarchy containing the decision goal, the alterna-
tives for reaching it, and the criteria for evaluating the alternatives.
2) Establish priorities among the elements of the hierarchy by making a series
of judgments based on pairwise comparisons of the elements.
3) Check the consistency of the judgments and eventually revise the comparison
matrices by reasking the experts when the consistency in judgments is too low.
4) Synthesize these judgments to yield a set of overall priorities for the hierarchy.
5) Come to a final decision based on the results of this process.
Example 1: According to his/her own preferences and using the Saaty’s 1-9
ordinal scale, a DM wants to buy a car among four available models belonging
to the set
Example (Four cars and 3 criteria):

{Cars} = �= {A, B,C, D}

{Criteria} = {C1 = Fuel economy, C2 = Reliability, C3 = Style}

� = {A, B,C, D}. To simplify the example, we assume that the objective
of DM is to select one of these cars based only on three criteria (C1=Fuel econ-
omy, C2=Reliability and C3=Style). According to his/her own preferences, the
DM ranks the di⇥erent criteria pairwise as follows: 1 - Reliability is 3 times as
important as fuel economy, 2 - Fuel economy is 4 times as important as style, 3
- Reliability is 5 times as important as style, which means that the DM thinks
that Reliability criteria (C2) is the most important criteria, followed by fuel
economy (C1) and style is the least important criteria2. The relative impor-
tance of one criterion over another can be expressed using pairwise comparison
matrix (also called knowledge matrix) as follows:

Ranking criteria:

Ranking cars w.r.t. Ci

AHP Result:

M12 = 1/3 = ”Fuel economy C2 is 3 times less important than Reliability C1”

M =
�

1/1 1/3 4/1
3/1 1/1 5/1
1/4 1/5 1/1

⇥

where the element mij of the matrix M indicates the relative importance of
criteria Ci with respect to the criteria Cj. In this example, m13 = 4/1 indicates
that the criteria C1 (Fuel economy) is four times as important as the criteria C3
(Style) for the DM, etc. From this pairwise matrix, Saaty demonstrated that
the ranking of the priorities of the criteria can be obtained from the normalized

2The relationships between preferences given by a DM may not be transitive as shown in
this example, nevertheless one has to deal with these inputs even in such situations.

3

A similar extension can be done for PCR5 and PCR6 formulas for N > 2 sources
given in [24], Vol. 2. A detailed presentation of this technique with several
examples will appear in [25] and thus it is not reported here. The di⇥erence
between eqs. (??) and () is that mPCR5(⌃) = 0 whereas mPCR5�(⌃) ⇥ 0. Since
we usually work with normal bba’s for decision making support, the combined
bba will be normalized. In the AHP context, the importance factors correspond
to the components of the normalized eigenvector w.
Example 3: Take back example 2 assume that C2 (the reliability) is three
times more important than C1 (fuel economy) so that the knowledge matrix is
given by:

M =
�
1/1 1/3
3/1 1/1

⇥
⇤
�
1.0000 0.3333
3.0000 1.0000

⇥

Its normalized principal eigenvector is

w =
⇤
0.2500 ⌅ �1

0.7500 ⌅ �2

⌅

and indicates that C2 is three times more important than C1 as expressed
in the prior DM preferences for ranking criteria. w = [w1 w2]� can also be
obtained directly by solving the algebraic system of equations w2 = 3w1 and
w1 + w2 = 1 with w1, w2 ⇧ [0, 1]. If we apply the importance discounting with
�1 = w1 = 0.25 and �2 = w2 = 0.75, one gets the following discounted bba’s

Elem. of 2� m�1,C1(.) m�2,C2(.)
� 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ⇥ B 0 0.0906
C 0 0

A ⇥ C 0 0.0917
B ⇥ C 0.1334 0.1926

A ⇥ B ⇥ C 0.0944 0

With the PCR5⇥ fusion of the sources m�1,C1(.) and m�2,C2(.), one gets
the results in the table. For decision-making support, one prefers to work
with normal bba’s. Therefore mPCR5�(.) is normalized by redistributing back
mPCR5�(⌃) proportionally to the masses of other focal elements as shown in the
right column of the next table.

Elem. of 2� mP CR5�
(.) mnormalized

P CR5�
(.)

� 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ⇥ B 0.0159 0.0461
C 0.0122 0.0355

A ⇥ C 0.0161 0.0469
B ⇥ C 0.1020 0.2963

A ⇥ B ⇥ C 0.0065 0.0188

If all sources have the same full importances (i.e. all �i=1), then mPCR5�(.) =
mPCR5(.) which is normal because in such case m�i=1,Ci(.) = mCi(.). From
mnormalized

PCR5�
(.) one can easily compute the credibility, pignistic probability or

plausibility of each element of � for decision-making. In this example one gets:
Elem. of � Bel(.) BetP (.) P l(.)

A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic mean) is used
directly with bba’s mC1(.) and mC2(.), one gets:

mAHP (.) =

⇧

  ⌥

0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0

⌃

⌦⌦��
�
0.25
0.75

⇥
=

⇧

  ⌥

0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944

⌃

⌦⌦�

5

user preferences

{Criteria} = {C1 = Fuel economy, C2 = Reliability}

1 DSmT-AHP for solving MCGDM

Previously, a new approach mixing AHP with DSmT solving MCDM problem
has been presented. In many practical situations however, the decision must
be taken by a group of n > 1 Decision Makers (GDM), denoted GDM =
{DMi, i = 1, 2, . . . , n}, rather than a single DM, and from the Multi-Criteria
preference rankings of the DMi’s. The importance (influence) of each member
of the GDM is usually non-equivalent [1] and the importance of each DM of the
GDM must be e⌅ciently taken into account in the final decision-making process.
Let’s denote by mDMi(.) the result of DSmT-AHP approach (see section ??)
related with DMi ⇥ GDM . The MCGDM problem consists in combining all
opinions/preferences rankings mDMi(.), i = 1, . . . , n with their own (possibly
di�erent) importances. When all DMi’s have equal importance, the classical
fusion rules1 � for combining mDMi(.) can be directly used to get the final
result mMCGDM (.) = [mDM1 � mDM2 � . . . � mDMn ](.); If the DMi’s have
di�erent importance weights wi, the DSmT-AHP approach can also be used
at the GDM fusion level using the importance discounting approach presented
here. The result for group decision-making is given by the PCR5� fusion of
m�i,DMi(.), with �i = wi and then the result must be normalized for decision
making support. In [6], Beynon used the classical discounting technique [23] to
readjust mDMi(.) with wi’s and he identified the importance factors with the
reliability factors. In our opinions, this is disputable since importance of a DMi

is not necessarily related with its reliability but rather with the importance in the
problem of the choice of his/her Multi-Criteria to establish his/her ranking, or it
can come from other (political, hierarchical, etc.) reasons. In our new approach,
we make a clear distinction between notions of importance and reliability and
both notions can be easily taken into account [25] with DSmT-AHP for solving
MCGDM problems, i.e. we can use the classical discounting technique for taking
into the reliabilities of the sources, and use the importance discounting proposed
here for dealing with the importances of sources.

2 Conclusions and perspectives

In this paper, we have presented a new method for Multi-Criteria Decision-
Making (MCDM) and Multi-Criteria Group Decision-Making (MCGDM) based
on the combination of AHP method developed by Saaty and DSmT. The AHP
method allows to build bba’s from DM preferences of solutions which are estab-
lished with respect to several criteria. The DSmT allows to aggregate e⌅ciently
the (possibly highly conflicting) bba’s based on each criterion. This DSmT-AHP
method allows to take into account also the di�erent importances of the criteria
and/or of the di�erent members of the decision-makers group. The application
of this DSmT-AHP approach for the prevention of natural hazards in mountains
is currently under progress, see [24], Vol.3, Chap. 23, and [27].

1typically the PCR5 or PCR6 rules, or eventually Dempster’s rule if the conflict between
DMi’s is low.
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A similar extension can be done for PCR5 and PCR6 formulas
for N > 2 sources given in [24], Vol. 2. A detailed presenta-
tion of this technique with several examples will appear in [25]
and thus it is not reported here. The difference between eqs.
(1) and (4) is that mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0.
Since we usually work with normal bba’s for decision making
support, the combined bba will be normalized. In the AHP
context, the importance factors correspond to the components
of the normalized eigenvector w.
Example 3: Take back example 2 assume that C2 (the relia-
bility) is three times more important than C1 (fuel economy)
so that the knowledge matrix is given by:

M =
[

1/1 1/3
3/1 1/1

]

≈
[

1.0000 0.3333
3.0000 1.0000

]

Its normalized principal eigenvector is w = [0.2500 0.7500]′

and indicates that C2 is three times more important than C1
as expressed in the prior DM preferences for ranking criteria.
w = [w1 w2]′ can also be obtained directly by solving the
algebraic system of equations w2 = 3w1 and w1 + w2 = 1
with w1, w2 ∈ [0, 1]. If we apply the importance discounting
with β1 = w1 = 0.25 and β2 = w2 = 0.75, one gets the
following discounted bba’s

Elem. of 2Θ mβ1,C1(.) mβ2,C2(.)

∅ 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ∪ B 0 0.0906
C 0 0

A ∪ C 0 0.0917
B ∪ C 0.1334 0.1926

A ∪ B ∪ C 0.0944 0

With the PCR5∅ fusion of the sources mβ1,C1(.) and
mβ2,C2(.), one gets the results in the table. For decision-
making support, one prefers to work with normal bba’s.
Therefore mPCR5∅

(.) is normalized by redistributing back
mPCR5∅

(∅) proportionally to the masses of other focal el-
ements as shown in the right column of the next table.

Elem. of 2Θ mPCR5∅
(.) mnormalized

PCR5∅
(.)

∅ 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ∪ B 0.0159 0.0461
C 0.0122 0.0355

A ∪ C 0.0161 0.0469
B ∪ C 0.1020 0.2963

A ∪ B ∪ C 0.0065 0.0188

If all sources have the same full importances (i.e. all βi=1),
then mPCR5∅

(.) = mPCR5(.) which is normal because in
such case mβi=1,Ci(.) = mCi(.). From mnormalized

PCR5∅
(.) one

can easily compute the credibility, pignistic probability or
plausibility of each element of Θ for decision-making. In this
example one gets:

Elem. of Θ Bel(.) BetP (.) P l(.)
A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic
mean) is used directly with bba’s mC1(.) and mC2(.), one
gets:

mAHP (.) =









0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0









×
[

0.25
0.75

]

=









0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944









which would have provided the following result for decision-
making

Elem. of Θ Bel(.) BetP (.) Pl(.)
A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance
discounting technique coupled with PCR5-based fusion rule
(what we call the DSmT-AHP approach) will suggest, as with
classical AHP, to choose the alternative A since the car A has
a bigger credibility (as well as a bigger pignistic probability
and plausibility) than cars B or C. It is however worth to
note that the values of Bel(.), BetP (.) and Pl(.) obtained by
both methods are slightly different. The difference in results
can have a strong impact in practice in the final result for
example if the costs of vehicles have also to be included in
the final decision (as explained at the end of the example 1).
Note also that the uncertainties U(X) = Pl(X) − Bel(X)
of alternatives X = A, B, C have been seriously diminished
when using DSmT-AHP with respect to what we obtain with
classical AHP as seen in the following table. The uncertainty
reduction is a nice expected property specially important for
decision-making support.

Elem. of Θ U(.) with AHP U(.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

Important remark: If Dempster’s rule is used instead of
PCR5∅ rule, one gets the following results when compar-
ing the fusion of mC1(.) with mC2(.) (i.e. without im-
portance discounting) with the fusion of mβ1=w1=0.25,C1(.)
with mβ2=w2=0.75,C2(.) (i.e. with importance discounting of
criteria C1 and C2):

Elem. of 2Θ mDS(.) mDS,w(.)

∅ 0 0
A 0.3588 0.3588
B 0.0908 0.0908

A ∪ B 0.0642 0.0642
C 0.0918 0.0918

A ∪ C 0.0649 0.0650
B ∪ C 0.3294 0.3294

A ∪ B ∪ C 0 0

Clearly, Dempster’s rule cannot deal properly with impor-
tance discounted bba’s as we have proposed in this work just
because the importance discounting technique preserves the
specificity of the primary information and thus Dempster’s
rule does not make a difference in results when combining
either mC1(.) with mC2(.) or when combining mβ1 #=1,C1(.)
with mβ2 #=1,C2(.) due to the way of processing of the total
conflicting mass of belief. PRC5 deals more efficiently with
importance discounted bba’s as we have shown in this exam-
ple. So it is not surprising that such discounting technique
has never been proposed and used in DST framework and this
explains why only the classical Shafer’s discounting technique
(the reliability discounting) is generally adopted. By using
Dempster’s rule, the fusion designer has no other choice
but to consider importance and reliability as same notions !
The DSmT framework with PCR5 (or PCR6) rule and the
importance discounting technique proposed here provides an
interesting and simple solution for the fusion of sources with
different importances which makes a clear distinction between
importances and reliabilities of sources.

importances

We apply importance discounting to get bba’s

DSm-AHP example (cont’d)
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Case 2: C1 and C2 have different importances (cont’d)

A similar extension can be done for PCR5 and PCR6 formulas for N > 2 sources
given in [24], Vol. 2. A detailed presentation of this technique with several
examples will appear in [25] and thus it is not reported here. The di⇥erence
between eqs. (??) and () is that mPCR5(⇧) = 0 whereas mPCR5�(⇧) ⇥ 0. Since
we usually work with normal bba’s for decision making support, the combined
bba will be normalized. In the AHP context, the importance factors correspond
to the components of the normalized eigenvector w.
Example 3: Take back example 2 assume that C2 (the reliability) is three
times more important than C1 (fuel economy) so that the knowledge matrix is
given by:

M =
�
1/1 1/3
3/1 1/1

⇥
⇤

�
1.0000 0.3333
3.0000 1.0000

⇥

Its normalized principal eigenvector is w = [0.2500 0.7500]� and indicates that
C2 is three times more important than C1 as expressed in the prior DM pref-
erences for ranking criteria. w = [w1 w2]� can also be obtained directly by
solving the algebraic system of equations w2 = 3w1 and w1 + w2 = 1 with
w1, w2 ⌅ [0, 1]. If we apply the importance discounting with �1 = w1 = 0.25
and �2 = w2 = 0.75, one gets the following discounted bba’s

Elem. of 2� m�1,C1(.) m�2,C2(.)
� 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ⇥ B 0 0.0906
C 0 0

A ⇥ C 0 0.0917
B ⇥ C 0.1334 0.1926

A ⇥ B ⇥ C 0.0944 0

With the PCR5⇥ fusion of the sources m�1,C1(.) and m�2,C2(.), one gets
the results in the table. For decision-making support, one prefers to work
with normal bba’s. Therefore mPCR5�(.) is normalized by redistributing back
mPCR5�(⇧) proportionally to the masses of other focal elements as shown in the
right column of the next table.

Elem. of 2� mP CR5�
(.) mnormalized

P CR5�
(.)

� 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ⇥ B 0.0159 0.0461
C 0.0122 0.0355

A ⇥ C 0.0161 0.0469
B ⇥ C 0.1020 0.2963

A ⇥ B ⇥ C 0.0065 0.0188

If all sources have the same full importances (i.e. all �i=1), then mPCR5�(.) =
mPCR5(.) which is normal because in such case m�i=1,Ci(.) = mCi(.). From
mnormalized

PCR5�
(.) one can easily compute the credibility, pignistic probability or

plausibility of each element of � for decision-making. In this example one gets:

Elem. of � Bel(.) BetP (.) P l(.)
A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic mean) is used
directly with bba’s mC1(.) and mC2(.), one gets:

mAHP (.) =

⇤

⌥⌥⇧

0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0

⌅

��⌃�
�
0.25
0.75

⇥
=

⇤

⌥⌥⇧

0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944

⌅

��⌃
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A similar extension can be done for PCR5 and PCR6 formulas
for N > 2 sources given in [24], Vol. 2. A detailed presenta-
tion of this technique with several examples will appear in [25]
and thus it is not reported here. The difference between eqs.
(1) and (4) is that mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0.
Since we usually work with normal bba’s for decision making
support, the combined bba will be normalized. In the AHP
context, the importance factors correspond to the components
of the normalized eigenvector w.
Example 3: Take back example 2 assume that C2 (the relia-
bility) is three times more important than C1 (fuel economy)
so that the knowledge matrix is given by:

M =
[

1/1 1/3
3/1 1/1

]

≈
[

1.0000 0.3333
3.0000 1.0000

]

Its normalized principal eigenvector is w = [0.2500 0.7500]′

and indicates that C2 is three times more important than C1
as expressed in the prior DM preferences for ranking criteria.
w = [w1 w2]′ can also be obtained directly by solving the
algebraic system of equations w2 = 3w1 and w1 + w2 = 1
with w1, w2 ∈ [0, 1]. If we apply the importance discounting
with β1 = w1 = 0.25 and β2 = w2 = 0.75, one gets the
following discounted bba’s

Elem. of 2Θ mβ1,C1(.) mβ2,C2(.)

∅ 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ∪ B 0 0.0906
C 0 0

A ∪ C 0 0.0917
B ∪ C 0.1334 0.1926

A ∪ B ∪ C 0.0944 0

With the PCR5∅ fusion of the sources mβ1,C1(.) and
mβ2,C2(.), one gets the results in the table. For decision-
making support, one prefers to work with normal bba’s.
Therefore mPCR5∅

(.) is normalized by redistributing back
mPCR5∅

(∅) proportionally to the masses of other focal el-
ements as shown in the right column of the next table.

Elem. of 2Θ mPCR5∅
(.) mnormalized

PCR5∅
(.)

∅ 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ∪ B 0.0159 0.0461
C 0.0122 0.0355

A ∪ C 0.0161 0.0469
B ∪ C 0.1020 0.2963

A ∪ B ∪ C 0.0065 0.0188

If all sources have the same full importances (i.e. all βi=1),
then mPCR5∅

(.) = mPCR5(.) which is normal because in
such case mβi=1,Ci(.) = mCi(.). From mnormalized

PCR5∅
(.) one

can easily compute the credibility, pignistic probability or
plausibility of each element of Θ for decision-making. In this
example one gets:

Elem. of Θ Bel(.) BetP (.) P l(.)
A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic
mean) is used directly with bba’s mC1(.) and mC2(.), one
gets:

mAHP (.) =









0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0









×
[

0.25
0.75

]

=









0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944









which would have provided the following result for decision-
making

Elem. of Θ Bel(.) BetP (.) Pl(.)
A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance
discounting technique coupled with PCR5-based fusion rule
(what we call the DSmT-AHP approach) will suggest, as with
classical AHP, to choose the alternative A since the car A has
a bigger credibility (as well as a bigger pignistic probability
and plausibility) than cars B or C. It is however worth to
note that the values of Bel(.), BetP (.) and Pl(.) obtained by
both methods are slightly different. The difference in results
can have a strong impact in practice in the final result for
example if the costs of vehicles have also to be included in
the final decision (as explained at the end of the example 1).
Note also that the uncertainties U(X) = Pl(X) − Bel(X)
of alternatives X = A, B, C have been seriously diminished
when using DSmT-AHP with respect to what we obtain with
classical AHP as seen in the following table. The uncertainty
reduction is a nice expected property specially important for
decision-making support.

Elem. of Θ U(.) with AHP U(.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

Important remark: If Dempster’s rule is used instead of
PCR5∅ rule, one gets the following results when compar-
ing the fusion of mC1(.) with mC2(.) (i.e. without im-
portance discounting) with the fusion of mβ1=w1=0.25,C1(.)
with mβ2=w2=0.75,C2(.) (i.e. with importance discounting of
criteria C1 and C2):

Elem. of 2Θ mDS(.) mDS,w(.)

∅ 0 0
A 0.3588 0.3588
B 0.0908 0.0908

A ∪ B 0.0642 0.0642
C 0.0918 0.0918

A ∪ C 0.0649 0.0650
B ∪ C 0.3294 0.3294

A ∪ B ∪ C 0 0

Clearly, Dempster’s rule cannot deal properly with impor-
tance discounted bba’s as we have proposed in this work just
because the importance discounting technique preserves the
specificity of the primary information and thus Dempster’s
rule does not make a difference in results when combining
either mC1(.) with mC2(.) or when combining mβ1 #=1,C1(.)
with mβ2 #=1,C2(.) due to the way of processing of the total
conflicting mass of belief. PRC5 deals more efficiently with
importance discounted bba’s as we have shown in this exam-
ple. So it is not surprising that such discounting technique
has never been proposed and used in DST framework and this
explains why only the classical Shafer’s discounting technique
(the reliability discounting) is generally adopted. By using
Dempster’s rule, the fusion designer has no other choice
but to consider importance and reliability as same notions !
The DSmT framework with PCR5 (or PCR6) rule and the
importance discounting technique proposed here provides an
interesting and simple solution for the fusion of sources with
different importances which makes a clear distinction between
importances and reliabilities of sources.

Final decision based on max of

Result with importance and PCR5/PCR6

Result with Dempster’s rule

A similar extension can be done for PCR5 and PCR6 formulas
for N > 2 sources given in [24], Vol. 2. A detailed presenta-
tion of this technique with several examples will appear in [25]
and thus it is not reported here. The difference between eqs.
(1) and (4) is that mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0.
Since we usually work with normal bba’s for decision making
support, the combined bba will be normalized. In the AHP
context, the importance factors correspond to the components
of the normalized eigenvector w.
Example 3: Take back example 2 assume that C2 (the relia-
bility) is three times more important than C1 (fuel economy)
so that the knowledge matrix is given by:

M =
[

1/1 1/3
3/1 1/1

]

≈
[

1.0000 0.3333
3.0000 1.0000

]

Its normalized principal eigenvector is w = [0.2500 0.7500]′

and indicates that C2 is three times more important than C1
as expressed in the prior DM preferences for ranking criteria.
w = [w1 w2]′ can also be obtained directly by solving the
algebraic system of equations w2 = 3w1 and w1 + w2 = 1
with w1, w2 ∈ [0, 1]. If we apply the importance discounting
with β1 = w1 = 0.25 and β2 = w2 = 0.75, one gets the
following discounted bba’s

Elem. of 2Θ mβ1,C1(.) mβ2,C2(.)

∅ 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ∪ B 0 0.0906
C 0 0

A ∪ C 0 0.0917
B ∪ C 0.1334 0.1926

A ∪ B ∪ C 0.0944 0

With the PCR5∅ fusion of the sources mβ1,C1(.) and
mβ2,C2(.), one gets the results in the table. For decision-
making support, one prefers to work with normal bba’s.
Therefore mPCR5∅

(.) is normalized by redistributing back
mPCR5∅

(∅) proportionally to the masses of other focal el-
ements as shown in the right column of the next table.

Elem. of 2Θ mPCR5∅
(.) mnormalized

PCR5∅
(.)

∅ 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ∪ B 0.0159 0.0461
C 0.0122 0.0355

A ∪ C 0.0161 0.0469
B ∪ C 0.1020 0.2963

A ∪ B ∪ C 0.0065 0.0188

If all sources have the same full importances (i.e. all βi=1),
then mPCR5∅

(.) = mPCR5(.) which is normal because in
such case mβi=1,Ci(.) = mCi(.). From mnormalized

PCR5∅
(.) one

can easily compute the credibility, pignistic probability or
plausibility of each element of Θ for decision-making. In this
example one gets:

Elem. of Θ Bel(.) BetP (.) P l(.)
A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic
mean) is used directly with bba’s mC1(.) and mC2(.), one
gets:

mAHP (.) =









0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0









×
[

0.25
0.75

]

=









0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944









which would have provided the following result for decision-
making

Elem. of Θ Bel(.) BetP (.) Pl(.)
A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance
discounting technique coupled with PCR5-based fusion rule
(what we call the DSmT-AHP approach) will suggest, as with
classical AHP, to choose the alternative A since the car A has
a bigger credibility (as well as a bigger pignistic probability
and plausibility) than cars B or C. It is however worth to
note that the values of Bel(.), BetP (.) and Pl(.) obtained by
both methods are slightly different. The difference in results
can have a strong impact in practice in the final result for
example if the costs of vehicles have also to be included in
the final decision (as explained at the end of the example 1).
Note also that the uncertainties U(X) = Pl(X) − Bel(X)
of alternatives X = A, B, C have been seriously diminished
when using DSmT-AHP with respect to what we obtain with
classical AHP as seen in the following table. The uncertainty
reduction is a nice expected property specially important for
decision-making support.

Elem. of Θ U(.) with AHP U(.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

Important remark: If Dempster’s rule is used instead of
PCR5∅ rule, one gets the following results when compar-
ing the fusion of mC1(.) with mC2(.) (i.e. without im-
portance discounting) with the fusion of mβ1=w1=0.25,C1(.)
with mβ2=w2=0.75,C2(.) (i.e. with importance discounting of
criteria C1 and C2):

Elem. of 2Θ mDS(.) mDS,w(.)

∅ 0 0
A 0.3588 0.3588
B 0.0908 0.0908

A ∪ B 0.0642 0.0642
C 0.0918 0.0918

A ∪ C 0.0649 0.0650
B ∪ C 0.3294 0.3294

A ∪ B ∪ C 0 0

Clearly, Dempster’s rule cannot deal properly with impor-
tance discounted bba’s as we have proposed in this work just
because the importance discounting technique preserves the
specificity of the primary information and thus Dempster’s
rule does not make a difference in results when combining
either mC1(.) with mC2(.) or when combining mβ1 #=1,C1(.)
with mβ2 #=1,C2(.) due to the way of processing of the total
conflicting mass of belief. PRC5 deals more efficiently with
importance discounted bba’s as we have shown in this exam-
ple. So it is not surprising that such discounting technique
has never been proposed and used in DST framework and this
explains why only the classical Shafer’s discounting technique
(the reliability discounting) is generally adopted. By using
Dempster’s rule, the fusion designer has no other choice
but to consider importance and reliability as same notions !
The DSmT framework with PCR5 (or PCR6) rule and the
importance discounting technique proposed here provides an
interesting and simple solution for the fusion of sources with
different importances which makes a clear distinction between
importances and reliabilities of sources.

Result with direct AHP using bba’s

A similar extension can be done for PCR5 and PCR6 formulas for N > 2 sources
given in [24], Vol. 2. A detailed presentation of this technique with several
examples will appear in [25] and thus it is not reported here. The di⇥erence
between eqs. (??) and () is that mPCR5(⇧) = 0 whereas mPCR5�(⇧) ⇥ 0. Since
we usually work with normal bba’s for decision making support, the combined
bba will be normalized. In the AHP context, the importance factors correspond
to the components of the normalized eigenvector w.
Example 3: Take back example 2 assume that C2 (the reliability) is three
times more important than C1 (fuel economy) so that the knowledge matrix is
given by:

M =
�
1/1 1/3
3/1 1/1

⇥
⇤

�
1.0000 0.3333
3.0000 1.0000

⇥

Its normalized principal eigenvector is w = [0.2500 0.7500]� and indicates that
C2 is three times more important than C1 as expressed in the prior DM pref-
erences for ranking criteria. w = [w1 w2]� can also be obtained directly by
solving the algebraic system of equations w2 = 3w1 and w1 + w2 = 1 with
w1, w2 ⌅ [0, 1]. If we apply the importance discounting with �1 = w1 = 0.25
and �2 = w2 = 0.75, one gets the following discounted bba’s

Elem. of 2� m�1,C1(.) m�2,C2(.)
� 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ⇥ B 0 0.0906
C 0 0

A ⇥ C 0 0.0917
B ⇥ C 0.1334 0.1926

A ⇥ B ⇥ C 0.0944 0

With the PCR5⇥ fusion of the sources m�1,C1(.) and m�2,C2(.), one gets
the results in the table. For decision-making support, one prefers to work
with normal bba’s. Therefore mPCR5�(.) is normalized by redistributing back
mPCR5�(⇧) proportionally to the masses of other focal elements as shown in the
right column of the next table.

Elem. of 2� mP CR5�
(.) mnormalized

P CR5�
(.)

� 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ⇥ B 0.0159 0.0461
C 0.0122 0.0355

A ⇥ C 0.0161 0.0469
B ⇥ C 0.1020 0.2963

A ⇥ B ⇥ C 0.0065 0.0188

If all sources have the same full importances (i.e. all �i=1), then mPCR5�(.) =
mPCR5(.) which is normal because in such case m�i=1,Ci(.) = mCi(.). From
mnormalized

PCR5�
(.) one can easily compute the credibility, pignistic probability or

plausibility of each element of � for decision-making. In this example one gets:

Elem. of � Bel(.) BetP (.) P l(.)
A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic mean) is used
directly with bba’s mC1(.) and mC2(.), one gets:

mAHP (.) =

⇤

⌥⌥⇧

0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0

⌅

��⌃�
�
0.25
0.75

⇥
=

⇤

⌥⌥⇧

0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944

⌅

��⌃
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A similar extension can be done for PCR5 and PCR6 formulas
for N > 2 sources given in [24], Vol. 2. A detailed presenta-
tion of this technique with several examples will appear in [25]
and thus it is not reported here. The difference between eqs.
(1) and (4) is that mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0.
Since we usually work with normal bba’s for decision making
support, the combined bba will be normalized. In the AHP
context, the importance factors correspond to the components
of the normalized eigenvector w.
Example 3: Take back example 2 assume that C2 (the relia-
bility) is three times more important than C1 (fuel economy)
so that the knowledge matrix is given by:

M =
[

1/1 1/3
3/1 1/1

]

≈
[

1.0000 0.3333
3.0000 1.0000

]

Its normalized principal eigenvector is w = [0.2500 0.7500]′

and indicates that C2 is three times more important than C1
as expressed in the prior DM preferences for ranking criteria.
w = [w1 w2]′ can also be obtained directly by solving the
algebraic system of equations w2 = 3w1 and w1 + w2 = 1
with w1, w2 ∈ [0, 1]. If we apply the importance discounting
with β1 = w1 = 0.25 and β2 = w2 = 0.75, one gets the
following discounted bba’s

Elem. of 2Θ mβ1,C1(.) mβ2,C2(.)

∅ 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ∪ B 0 0.0906
C 0 0

A ∪ C 0 0.0917
B ∪ C 0.1334 0.1926

A ∪ B ∪ C 0.0944 0

With the PCR5∅ fusion of the sources mβ1,C1(.) and
mβ2,C2(.), one gets the results in the table. For decision-
making support, one prefers to work with normal bba’s.
Therefore mPCR5∅

(.) is normalized by redistributing back
mPCR5∅

(∅) proportionally to the masses of other focal el-
ements as shown in the right column of the next table.

Elem. of 2Θ mPCR5∅
(.) mnormalized

PCR5∅
(.)

∅ 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ∪ B 0.0159 0.0461
C 0.0122 0.0355

A ∪ C 0.0161 0.0469
B ∪ C 0.1020 0.2963

A ∪ B ∪ C 0.0065 0.0188

If all sources have the same full importances (i.e. all βi=1),
then mPCR5∅

(.) = mPCR5(.) which is normal because in
such case mβi=1,Ci(.) = mCi(.). From mnormalized

PCR5∅
(.) one

can easily compute the credibility, pignistic probability or
plausibility of each element of Θ for decision-making. In this
example one gets:

Elem. of Θ Bel(.) BetP (.) P l(.)
A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic
mean) is used directly with bba’s mC1(.) and mC2(.), one
gets:

mAHP (.) =









0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0









×
[

0.25
0.75

]

=









0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944









which would have provided the following result for decision-
making

Elem. of Θ Bel(.) BetP (.) Pl(.)
A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance
discounting technique coupled with PCR5-based fusion rule
(what we call the DSmT-AHP approach) will suggest, as with
classical AHP, to choose the alternative A since the car A has
a bigger credibility (as well as a bigger pignistic probability
and plausibility) than cars B or C. It is however worth to
note that the values of Bel(.), BetP (.) and Pl(.) obtained by
both methods are slightly different. The difference in results
can have a strong impact in practice in the final result for
example if the costs of vehicles have also to be included in
the final decision (as explained at the end of the example 1).
Note also that the uncertainties U(X) = Pl(X) − Bel(X)
of alternatives X = A, B, C have been seriously diminished
when using DSmT-AHP with respect to what we obtain with
classical AHP as seen in the following table. The uncertainty
reduction is a nice expected property specially important for
decision-making support.

Elem. of Θ U(.) with AHP U(.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

Important remark: If Dempster’s rule is used instead of
PCR5∅ rule, one gets the following results when compar-
ing the fusion of mC1(.) with mC2(.) (i.e. without im-
portance discounting) with the fusion of mβ1=w1=0.25,C1(.)
with mβ2=w2=0.75,C2(.) (i.e. with importance discounting of
criteria C1 and C2):

Elem. of 2Θ mDS(.) mDS,w(.)

∅ 0 0
A 0.3588 0.3588
B 0.0908 0.0908

A ∪ B 0.0642 0.0642
C 0.0918 0.0918

A ∪ C 0.0649 0.0650
B ∪ C 0.3294 0.3294

A ∪ B ∪ C 0 0

Clearly, Dempster’s rule cannot deal properly with impor-
tance discounted bba’s as we have proposed in this work just
because the importance discounting technique preserves the
specificity of the primary information and thus Dempster’s
rule does not make a difference in results when combining
either mC1(.) with mC2(.) or when combining mβ1 #=1,C1(.)
with mβ2 #=1,C2(.) due to the way of processing of the total
conflicting mass of belief. PRC5 deals more efficiently with
importance discounted bba’s as we have shown in this exam-
ple. So it is not surprising that such discounting technique
has never been proposed and used in DST framework and this
explains why only the classical Shafer’s discounting technique
(the reliability discounting) is generally adopted. By using
Dempster’s rule, the fusion designer has no other choice
but to consider importance and reliability as same notions !
The DSmT framework with PCR5 (or PCR6) rule and the
importance discounting technique proposed here provides an
interesting and simple solution for the fusion of sources with
different importances which makes a clear distinction between
importances and reliabilities of sources.

importance has no impact !!!!

A similar extension can be done for PCR5 and PCR6 formulas
for N > 2 sources given in [24], Vol. 2. A detailed presenta-
tion of this technique with several examples will appear in [25]
and thus it is not reported here. The difference between eqs.
(1) and (4) is that mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0.
Since we usually work with normal bba’s for decision making
support, the combined bba will be normalized. In the AHP
context, the importance factors correspond to the components
of the normalized eigenvector w.
Example 3: Take back example 2 assume that C2 (the relia-
bility) is three times more important than C1 (fuel economy)
so that the knowledge matrix is given by:

M =
[

1/1 1/3
3/1 1/1

]

≈
[

1.0000 0.3333
3.0000 1.0000

]

Its normalized principal eigenvector is w = [0.2500 0.7500]′

and indicates that C2 is three times more important than C1
as expressed in the prior DM preferences for ranking criteria.
w = [w1 w2]′ can also be obtained directly by solving the
algebraic system of equations w2 = 3w1 and w1 + w2 = 1
with w1, w2 ∈ [0, 1]. If we apply the importance discounting
with β1 = w1 = 0.25 and β2 = w2 = 0.75, one gets the
following discounted bba’s

Elem. of 2Θ mβ1,C1(.) mβ2,C2(.)

∅ 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ∪ B 0 0.0906
C 0 0

A ∪ C 0 0.0917
B ∪ C 0.1334 0.1926

A ∪ B ∪ C 0.0944 0

With the PCR5∅ fusion of the sources mβ1,C1(.) and
mβ2,C2(.), one gets the results in the table. For decision-
making support, one prefers to work with normal bba’s.
Therefore mPCR5∅

(.) is normalized by redistributing back
mPCR5∅

(∅) proportionally to the masses of other focal el-
ements as shown in the right column of the next table.

Elem. of 2Θ mPCR5∅
(.) mnormalized

PCR5∅
(.)

∅ 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ∪ B 0.0159 0.0461
C 0.0122 0.0355

A ∪ C 0.0161 0.0469
B ∪ C 0.1020 0.2963

A ∪ B ∪ C 0.0065 0.0188

If all sources have the same full importances (i.e. all βi=1),
then mPCR5∅

(.) = mPCR5(.) which is normal because in
such case mβi=1,Ci(.) = mCi(.). From mnormalized

PCR5∅
(.) one

can easily compute the credibility, pignistic probability or
plausibility of each element of Θ for decision-making. In this
example one gets:

Elem. of Θ Bel(.) BetP (.) P l(.)
A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic
mean) is used directly with bba’s mC1(.) and mC2(.), one
gets:

mAHP (.) =









0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0









×
[

0.25
0.75

]

=









0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944









which would have provided the following result for decision-
making

Elem. of Θ Bel(.) BetP (.) Pl(.)
A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance
discounting technique coupled with PCR5-based fusion rule
(what we call the DSmT-AHP approach) will suggest, as with
classical AHP, to choose the alternative A since the car A has
a bigger credibility (as well as a bigger pignistic probability
and plausibility) than cars B or C. It is however worth to
note that the values of Bel(.), BetP (.) and Pl(.) obtained by
both methods are slightly different. The difference in results
can have a strong impact in practice in the final result for
example if the costs of vehicles have also to be included in
the final decision (as explained at the end of the example 1).
Note also that the uncertainties U(X) = Pl(X) − Bel(X)
of alternatives X = A, B, C have been seriously diminished
when using DSmT-AHP with respect to what we obtain with
classical AHP as seen in the following table. The uncertainty
reduction is a nice expected property specially important for
decision-making support.

Elem. of Θ U(.) with AHP U(.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

Important remark: If Dempster’s rule is used instead of
PCR5∅ rule, one gets the following results when compar-
ing the fusion of mC1(.) with mC2(.) (i.e. without im-
portance discounting) with the fusion of mβ1=w1=0.25,C1(.)
with mβ2=w2=0.75,C2(.) (i.e. with importance discounting of
criteria C1 and C2):

Elem. of 2Θ mDS(.) mDS,w(.)

∅ 0 0
A 0.3588 0.3588
B 0.0908 0.0908

A ∪ B 0.0642 0.0642
C 0.0918 0.0918

A ∪ C 0.0649 0.0650
B ∪ C 0.3294 0.3294

A ∪ B ∪ C 0 0

Clearly, Dempster’s rule cannot deal properly with impor-
tance discounted bba’s as we have proposed in this work just
because the importance discounting technique preserves the
specificity of the primary information and thus Dempster’s
rule does not make a difference in results when combining
either mC1(.) with mC2(.) or when combining mβ1 #=1,C1(.)
with mβ2 #=1,C2(.) due to the way of processing of the total
conflicting mass of belief. PRC5 deals more efficiently with
importance discounted bba’s as we have shown in this exam-
ple. So it is not surprising that such discounting technique
has never been proposed and used in DST framework and this
explains why only the classical Shafer’s discounting technique
(the reliability discounting) is generally adopted. By using
Dempster’s rule, the fusion designer has no other choice
but to consider importance and reliability as same notions !
The DSmT framework with PCR5 (or PCR6) rule and the
importance discounting technique proposed here provides an
interesting and simple solution for the fusion of sources with
different importances which makes a clear distinction between
importances and reliabilities of sources.

A similar extension can be done for PCR5 and PCR6 formulas
for N > 2 sources given in [24], Vol. 2. A detailed presenta-
tion of this technique with several examples will appear in [25]
and thus it is not reported here. The difference between eqs.
(1) and (4) is that mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0.
Since we usually work with normal bba’s for decision making
support, the combined bba will be normalized. In the AHP
context, the importance factors correspond to the components
of the normalized eigenvector w.
Example 3: Take back example 2 assume that C2 (the relia-
bility) is three times more important than C1 (fuel economy)
so that the knowledge matrix is given by:

M =
[

1/1 1/3
3/1 1/1

]

≈
[

1.0000 0.3333
3.0000 1.0000

]

Its normalized principal eigenvector is w = [0.2500 0.7500]′

and indicates that C2 is three times more important than C1
as expressed in the prior DM preferences for ranking criteria.
w = [w1 w2]′ can also be obtained directly by solving the
algebraic system of equations w2 = 3w1 and w1 + w2 = 1
with w1, w2 ∈ [0, 1]. If we apply the importance discounting
with β1 = w1 = 0.25 and β2 = w2 = 0.75, one gets the
following discounted bba’s

Elem. of 2Θ mβ1,C1(.) mβ2,C2(.)

∅ 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ∪ B 0 0.0906
C 0 0

A ∪ C 0 0.0917
B ∪ C 0.1334 0.1926

A ∪ B ∪ C 0.0944 0

With the PCR5∅ fusion of the sources mβ1,C1(.) and
mβ2,C2(.), one gets the results in the table. For decision-
making support, one prefers to work with normal bba’s.
Therefore mPCR5∅

(.) is normalized by redistributing back
mPCR5∅

(∅) proportionally to the masses of other focal el-
ements as shown in the right column of the next table.

Elem. of 2Θ mPCR5∅
(.) mnormalized

PCR5∅
(.)

∅ 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ∪ B 0.0159 0.0461
C 0.0122 0.0355

A ∪ C 0.0161 0.0469
B ∪ C 0.1020 0.2963

A ∪ B ∪ C 0.0065 0.0188

If all sources have the same full importances (i.e. all βi=1),
then mPCR5∅

(.) = mPCR5(.) which is normal because in
such case mβi=1,Ci(.) = mCi(.). From mnormalized

PCR5∅
(.) one

can easily compute the credibility, pignistic probability or
plausibility of each element of Θ for decision-making. In this
example one gets:

Elem. of Θ Bel(.) BetP (.) P l(.)
A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic
mean) is used directly with bba’s mC1(.) and mC2(.), one
gets:

mAHP (.) =









0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0









×
[

0.25
0.75

]

=









0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944









which would have provided the following result for decision-
making

Elem. of Θ Bel(.) BetP (.) Pl(.)
A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance
discounting technique coupled with PCR5-based fusion rule
(what we call the DSmT-AHP approach) will suggest, as with
classical AHP, to choose the alternative A since the car A has
a bigger credibility (as well as a bigger pignistic probability
and plausibility) than cars B or C. It is however worth to
note that the values of Bel(.), BetP (.) and Pl(.) obtained by
both methods are slightly different. The difference in results
can have a strong impact in practice in the final result for
example if the costs of vehicles have also to be included in
the final decision (as explained at the end of the example 1).
Note also that the uncertainties U(X) = Pl(X) − Bel(X)
of alternatives X = A, B, C have been seriously diminished
when using DSmT-AHP with respect to what we obtain with
classical AHP as seen in the following table. The uncertainty
reduction is a nice expected property specially important for
decision-making support.

Elem. of Θ U(.) with AHP U(.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

Important remark: If Dempster’s rule is used instead of
PCR5∅ rule, one gets the following results when compar-
ing the fusion of mC1(.) with mC2(.) (i.e. without im-
portance discounting) with the fusion of mβ1=w1=0.25,C1(.)
with mβ2=w2=0.75,C2(.) (i.e. with importance discounting of
criteria C1 and C2):

Elem. of 2Θ mDS(.) mDS,w(.)

∅ 0 0
A 0.3588 0.3588
B 0.0908 0.0908

A ∪ B 0.0642 0.0642
C 0.0918 0.0918

A ∪ C 0.0649 0.0650
B ∪ C 0.3294 0.3294

A ∪ B ∪ C 0 0

Clearly, Dempster’s rule cannot deal properly with impor-
tance discounted bba’s as we have proposed in this work just
because the importance discounting technique preserves the
specificity of the primary information and thus Dempster’s
rule does not make a difference in results when combining
either mC1(.) with mC2(.) or when combining mβ1 #=1,C1(.)
with mβ2 #=1,C2(.) due to the way of processing of the total
conflicting mass of belief. PRC5 deals more efficiently with
importance discounted bba’s as we have shown in this exam-
ple. So it is not surprising that such discounting technique
has never been proposed and used in DST framework and this
explains why only the classical Shafer’s discounting technique
(the reliability discounting) is generally adopted. By using
Dempster’s rule, the fusion designer has no other choice
but to consider importance and reliability as same notions !
The DSmT framework with PCR5 (or PCR6) rule and the
importance discounting technique proposed here provides an
interesting and simple solution for the fusion of sources with
different importances which makes a clear distinction between
importances and reliabilities of sources.

DSmT/AHP reduces uncertainty

Final decision based on max of

DSm-AHP example (cont’d)
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BF-TOPSIS Methods
[J. Dezert, D. Han, H. Yin, A new belief function based approach for multi-criteria 
decision-making support, in Proc. of Fusion 2016.]

[J. Dezert, D. Han, J.-M. Tacnet, Multi-Criteria Decision-Making with Imprecise Scores 
and BF-TOPSIS, in Proc. of Fusion 2017.]

Introduction

Classical Multi-Criteria Decision-Making (MCDM) problem:

How to choose an alternative (make a choice) among a known set of
alternatives based on their numerical scores ?

Example: Choosing a car to buy based on several criteria (cost,
performance,consumption,etc)

What we have:
I Alternatives: A , {A1,A2, . . . ,AM

} (M > 2)
I Criteria: C , {C1,C2, . . . ,CN

} (N � 1)
I Score matrix: S , [S

ij

]

Difficulties:
I Scores are given in different units and different scales (how to normalize

them?)
I Criteria C

j

do not have same weights w

j

of importance in general.
w

j

2 [0, 1], j = 1, . . . ,N and
P

j

w

j

= 1.
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What we have

Difficulties

How to choose an alternative (make a choice) among a known set of 
alternatives based on their numerical scores ?
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Introduction (cont’d)

Some facts
I Most of existing methods require score normalization at first, but ERV (Estimator

Ranking Vector) method [Yin et al. Fusion 2013].
I They all suffer of rank reversal problem (the rank is changed by adding or

deleting an alternative) which is a serious drawback.
I None of them makes consensus among users.
I TOPSIS (technique for order preference by similarity to ideal solution) method is

widely used but it requires data normalization.

Our goals
I Develop a new TOPSIS method without score normalization to be more robust to

rank reversal based on belief functions (BF).

Our contribution
I A new generic approach for MCDM, called BF-TOPSIS.
I A new method for building BF from unnormalized scores.
I Four BF-TOPSIS methods are proposed (having different complexities).

4/22

BF-TOPSIS Methods
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BF-TOPSIS MethodsConstruction of BBAs

How to construct BBAs on FoD of alternatives A , {A1,A2, . . . ,A

M

} from the given
score matrix S , [S

ij

] ?

We define the positive support of A

i

based on all scores values of criteria C

j

to
measure how much A

i

is better than other alternatives as follows

Sup

j

(A
i

) ,
X

k2{1,...M}|S
kj

S

ij

|S
ij

� S

kj

| (4)

We define the negative support of A

i

based on all scores values of criteria C

j

to
measure how much A

i

is worse than other alternatives as follows

Inf

j

(A
i

) , �
X

k2{1,...M}|S
kj

�S

ij

|S
ij

� S

kj

| (5)

We prove that the inequality always holds (see Theorem and its proof in the paper)

Sup

j

(A
i

)

A

j

max
 1 �

Inf

j

(A
i

)

A

j

min

(6)

iff A

j

max , max
i

Sup

j

(A
i

) and A

j

min , min
i

Inf

j

(A
i

) are different from zero.

8/22
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BF-TOPSIS MethodsConstruction of BBAs (cont’d)

Belief modeling

The belief of A

i

and of Ā

i

are defined by

Bel

ij

(A
i

) , Sup

j

(A
i

)

A

j

max
and Bel

ij

(Ā
i

) , Inf

j

(A
i

)

A

j

min

(7)

If A

j

max = 0 (there is no evidential support for A

i

), then Bel

ij

(A
i

) = 0.
If A

j

min = 0 (there is no evidential support for Ā

i

), then Bel

ij

(Ā
i

) = 0.

By construction, Bel

ij

(A
i

) and Bel

ij

(Ā
i

) belong to [0, 1], and thanks to previous
inequality one always has Bel

ij

(A
i

)  (Pl

ij

(A
i

) = 1 � Bel

ij

(Ā
i

)).

BBA construction

From belief intervals [Bel

ij

(A
i

),Pl

ij

(A
i

)], one get M ⇥ N BBAs m

ij

(·) by taking

m

ij

(A
i

) = Bel

ij

(A
i

) (8)

m

ij

(Ā
i

) = Bel

ij

(Ā
i

) = 1 � Pl

ij

(A
i

) (9)

m

ij

(A
i

[ Ā

i

) = Pl

ij

(A
i

)� Bel

ij

(A
i

) (10)
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BF-TOPSIS Methods
BF-TOPSIS methods

How to use BBAs matrix M = [(m
ij

(A
i

),m
ij

(Ā
i

),m
ij

(A
i

[ Ā

i

))] to rank alternatives?

• Direct fusion of BBAs by DS or PCR6 rules does not work efficiently (see example 1)
• We develop a modified TOPSIS approach with BF ) 4 BF-TOPSIS methods.

BF-TOPSIS1 method
For each A

i

, we compute the weighted average distances to ideal best and worst
solutions, and from them the closeness measures C(A

i

,Abest) to A

best.

BF-TOPSIS2 method
For each criteria C

j

, we compute the closeness measures C

j

(A
i

,Abest) to ideal best
A

best solution, and then we make the weighted average of closeness measures to get
C(A

i

,Abest).

BF-TOPSIS3 method
For each A

i

, we fuse BBAs of the same row of matrix M with PCR6, then compute
distances to ideal solutions to get relative closeness measure to ideal best solution.

BF-TOPSIS4 method
Same as BF-TOPSIS3 using ZPCR6 (PCR6 with Zhang’s degree of intersection).

11/22
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BF-TOPSIS MethodsBF-TOPSIS methods

BF-TOPSIS1 method

Step 1: From S, compute BBAs m

ij

(A
i

) m

ij

(Ā
i

), and m

ij

(A
i

[ Ā

i

)

Step 2: Set m

best
ij

(A
i

) , 1, and m

worst
ij

(Ā
i

) , 1 and compute distances d

E

BI

(m
ij

,mbest
ij

)

and d

E

BI

(m
ij

,mworst
ij

) to ideal solutions.
Step 3: Compute the weighted average distances for A

i

, i = 1, . . . ,M

d

best(A
i

) ,
NX

j=1

w

j

· d

E

BI

(m
ij

,mbest
ij

) (11)

d

worst(A
i

) ,
NX

j=1

w

j

· d

E

BI

(m
ij

,mworst
ij

) (12)

Step 4: Compute the relative closeness of A

i

, i = 1, . . . ,M, with respect to ideal best
solution A

best

C(A
i

,Abest) , d

worst(A
i

)

d

worst(A
i

) + d

best(A
i

)
(13)

Step 5: Sort C(A
i

,Abest) 2 [0, 1] in descending order (larger C(A
i

,Abest) means higher
preference).
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BF-TOPSIS MethodsExamples

Example 1 (Mono-criteria): Preference order ! greater value is better

S ,

2

66666664

C1

A1 10
A2 20
A3 �5
A4 0
A5 100
A6 �11
A7 0

3

77777775

) M ,

2

666666664

m

i1(Ai

) m

i1(Āi

) m

i1(Ai

[ Ā

i

)

A1 0.0955 0.5236 0.3809
A2 0.1809 0.4188 0.4003
A3 0.0102 0.8115 0.1783
A4 0.0273 0.6806 0.2921
A5 1.0000 0 0
A6 0 1.0000 0
A7 0.0273 0.6806 0.2921

3

777777775

)

2

666666664

C(A
i

,Abest)

A1 0.1130
A2 0.1948
A3 0.0257
A4 0.0485
A5 1.0000
A6 0
A7 0.0485

3

777777775

Ranking methods Preferences order
By direct ranking A5 � A2 � A1 � (A4 ⇠ A7) � A3 � A6
By BF-TOPSIS A5 � A2 � A1 � (A4 ⇠ A7) � A3 � A6
By DS fusion A5 � (A1 ⇠ A2 ⇠ A3 ⇠ A4 ⇠ A6 ⇠ A7)
By PCR6 fusion A5 � A2 � A1 � A4 � (A3 ⇠ A6 ⇠ A7)

Rankings based on DS and PCR6 fusion do not match with direct ranking even in
mono criteria case because of dependencies of BBAs in their construction.
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BF-TOPSIS Methods
Examples

Example 2 (Mono-criteria): Non informative case

When all scores are the same:
) all BBAs are the same and equal to the vacuous BBA

) all closeness measures to best ideal solution are equal

S ,

2

66666664

C1

A1 s

...
...

A

i

s

...
...

A

M

s

3

77777775

) M ,

2

66666664

m

i1(Ai

[ Ā

i

)

A1 1
...

...
A

i

1
...

...
A

M

1

3

77777775

)

2

66666664

C(A
i

,Abest)

A1 c

...
...

A

i

c

...
...

A

M

c

3

77777775

Conclusion: No specific choice can be drawn, which is perfectly normal.
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Examples
Example 3 (Multi-criteria): 5 alternatives, 4 criteria [Wang-Luo-2009]

S ,

2

66664

C1,
1
6 C2,

1
3 C3,

1
3 C4,

1
6

A1 36 42 43 70
A2 25 50 45 80
A3 28 45 50 75
A4 24 40 47 100
A5 30 30 45 80

3

77775

Set of alternatives TOPSIS

{A1,A2,A3} A3 � A2 � A1
{A1,A2,A3,A4} A2 � A3 � A1 � A4

{A1,A2,A3,A4,A5} A3 � A2 � A4 � A1 � A5
Rank reversal

Set of alternatives BF-TOPSIS1 & 2 BF-TOPSIS3 & 4

{A1,A2,A3} A2 � A3 � A1 A3 � A2 � A1
{A1,A2,A3,A4} A3 � A2 � A4 � A1 A3 � A2 � A4 � A1

{A1,A2,A3,A4,A5} A3 � A2 � A4 � A1 � A5 A3 � A2 � A4 � A1 � A5
Rank reversal No rank reversal
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