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1 - Information Fusion with Belief functions

2 - Decision-Making with Belief functions

3 - Multi-Criteria Decision-Making Support
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Part 1

Information Fusion
with Belief Functions
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Main references

Some references on Dempster-Shafer Theory (DST)
G. Shafer, A mathematical theory of evidence, 1976.

R. Yager, L. Liu, Classic Works of the Dempster-Shafer
Theory of Belief Functions, 2008.
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http://www.glennshafer.com/books/amte.html
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Some references on Dezert-Smarandache Theory (DSmT)

Toolboxes: nttp:/bfasp.iutlan.univ-rennes.fr/wiki/index.php/Toolboxes
http://martin.iutlan.univ-rennes1.fr/Doc/GeneralBeliefFunctionsFramework.tar

F. Smarandache, J. Dezert (Eds), Advances and

e applications of DSmT for information fusion, Vols.
S e 1-4, 2004, 2006, 2009 & 2015.
T http://www.onera.fr/fr/staff/jean-dezert
= http://www.smarandache.com/DSmT.htm
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Limitations of probabiliti

They do not account for partial/incomplete knowledge.

They deal generally with information drawn from generic knowledge
based either on population of items, laws of physics, common sense, ...

They capture only one aspect of the uncertainty
(the randomness, i.e. the variability through repeated measurements).

They can’t distinguish between uncertainty due to variability, and

uncertainty due to the incompletness/lack of knowledge (epistemic
uncertainty).

Variability is related with precisely observed random observations

Incompletness/non specificity is related with missing/partial information
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Limitation of uniform prior pdf to model the ignorance

Consider a random variable W taking its value w in [1,2], and the
random variable V=1/W which obviously takes its value v=1/w in [0.5,1].

To model ignorance of value of W, it is usually assumed uniform prior pdf.

0 if w<1 |
We~u(L2)) e P(IW<w)=qw—-1 if 1<w<2 pw(w) = ,(—)P(W <w) = ! ff * g? 1.2
1 if w>2 dw L if we [1.‘2]

By doing so, however we get Non-uniform prior pdf for V=1/W.

! ! 1
P(V<v)=P(—<v)=P(W=>=)=1-P(W < -) | .
I v | v ) . 0 if vé¢[3.1]
1 if L<l pv(v) = PV =v) =1 | i owellq 4
={2-1 i le2 | o i vels ] ~ |
0 if L2 |

which is not satisfactory because, we are a priori fully ignorant on

the true value of W as well as of 1/W Il So the choice of uniform pdf
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Frame of discernment and Shafet
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Paradigm shift with Belief Functions (BF)

Beliefs often are related with singular event and are not necessarily
related with statistical data and generic knowledge, but with singular
evidence. BF are well adapted for modeling partial knowledge.

Frame of discernment (FoD) ©@={0,i=1,...,n}

Shafer’s model Close world assumption with exclusivity of elements
Power-set P(©) £ 2°

Any subset A of the FoD corresponds to the proposition
Po(A) = The true value of 0 is in a subset A of ©.

There is equivalence between operators on sets and logical operators
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Impossibility partial ignorances full ignorance

J Y Y

2@ — {@, 61,05,03,01 UbO>,01U6b3,60>U63 6, U0, U 93}

29 =2% =38
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m(0) =0 and Z m(A) =1 Focal element A: iff m(A)>0

Vacuous BBA VA # 0O, m,(A) =0and m,(0) =1

Credibility Bel(4)= Y m(B) Total mass of subsets implying A
Be2©9 BCA

Plausibility PI(A) = Z m(B)  Total mass of subsets intersecting A
Be2®,BnAz#) In general, 0 < Bel(A) < PI(A4) <1

«Bayesian» BBA Focal elements are singletons Bel(A)=PI(A)=P(A)

[G. Shafer, A mathematical theory of evidence, 1976.]
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Shafer’s discounting

Discounting a source of evidence (Shafer’s reliability discounting)

4 (

m(A) m'(A) = a-m(A) VA # ©
m'(0)=(1—-a)+ a-m(0)

\ \

« = 1 means no discounting (full reliability of the source)
« = 0 means total discounting (full unreliable/ignorant source)

To be used if one has a good estimation of the reliability factor of the
source based on experiments and ground truth.

Other discounting techniques

- Contextual discounting [Denceux et al. 2005, 2006]
- Importance discounting

[Smarandache F., Dezert J., Tacnet J.-M., Fusion of sources of evidence with different
importances and reliabilities, Proc. of Fusion 2010.]

ONERA




mip(X) = > my(X)ma(Xp) Kig 2 mip(@) = > my(Xq)ma(Xp)
Xy NXo=X X1 NXo=0
Conjunctive fusion Conflict level

DS rule = Normalized conjunctive rule

[G. Shafer, A mathematical theory of evidence, 1976.]
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Properties of DS rule and condi

m Properties: extension to n > 2 sources; associativity; commutativity,
neutrality of vacuous bba [m& my](.) = m(.)

Because of its properties, DS rule is very appealing.

m Conditioning: m(.) combined with mz(.) focused on Z (i.e. mz(Z) = 1) with
DS rule yields m(X|Z) = [m & mz](X) = [mz & m](X) and
PI(X|Z) = PI(X N Z)/PI(Z) (similar to Conditioning rule for probas).

Because of this, DS rule has often been wrongly interpreted as a
generalization of Bayes rule. See the following papers

[A. Brodzik, R. Enders, A case of combination of evidence in the Dempster-Shafer theory
inconsistent with evaluation of probabilities, 2011.]
https://arxiv.org/pdf/1107.0082.pdf

[J. Heendeni et al., A Generalization of Bayesian Inference in the
Dempster-Shafer Belief Theoretic Framework, in Proc. Fusion 2016.]
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Drawbacks of DS rule

DS rule is mathematically not defined when conlict is total (K=1).

DS rule doesn’t behave well not only in high conflicting case
[Zadeh 1979], but even in low conflicting case.

[Dezert J., Wang P., Tchamova A., On The Validity of Dempster-Shafer Theory,
Proc. of Fusion 2012.]

DS rule is not a generalization of Bayes rule because it is
iIncompatible with Bayes rule when the prior is not uniform,

NOr vacuous.

[A. Brodzik, R. Enders, A case of combination of evidence in the Dempster-Shafer theory

iInconsistent with evaluation of probabilities, 2011.]
https://arxiv.org/pdf/1107.0082.pdf

[Dezert J., Tchamova A., Han D., Tacnet J.-M., Why Dempster’s fusion rule is not a
generalization of Bayes fusion rule, Proc. of Fusion 2013.]

[Dezert J., Tchamova A., On the validity of Dempster's fusion rule and its interpretation as
a generalization of Bayesian fusion rule, Int. J. of Intelligent Systems, Vol. 29 (3), 2014.]
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High conflict case © = {#;, = Tumor, §;, = Meningitis, §5 = Concussion} Shafer’s model

m1(91) =1 — €1 m1(92) =0 m1(93) — €1

Bayesian BBAs
y m2(6’1) =0 m2(92) =1 — €9 m2(93) = €9

k12 — (1 — 61)(1 — 62) -+ (1 — 61)62 -+ 61(1 — 62) =1 — €1€E92
If e1 =0.1 and e = 0.1, then k12 =1 —0.01 = 0.99 (high conf.)

i €1€92
PS fusion resul mibs) = (1—e1)-04+0-(1—e2)+erer =1

DS rule provides same result whatever the positive values of e1 and e, are !!!

DS is not numerically robust to slight input changes. If we take very small non
zero values instead of zeros, we getim(6,) = m(fy) ~ 0.5 m(f3) =~ 0

[J. Dezert, A. Tchamova, D. Han, A Real Z-box Experiment for Testing Zadeh's
Example, in Proc. of Fusion 2015.]
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Modified Zadeh’s example
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Low conflict case © = {#; = Tumor, 5 = Meningitis, /35 = Concussion} Shafer’s model

m1(91) = (.99 ™1 (92) — 0.01 T ((93) =0

Bayesian BBAs ms(01) = 0.99  ma(6s) =0 mo(63) = 0.01

k12 = (0.99 - 0.01) + (0.01 - 0.99) + (0.01 - 0.01) = 0.0199

1 — ko 1-0.0199 0.9801

DS fusion result m/(60;) =

One gets complete support (i.e. certainty) for the diagnosis of a brain tumor !!!

This result is counter-intuitive since there is not a full agreement (there is a conflict)
between the two sources, and the existence of non-zero probas for other diagnoses
implies less than complete support. So we should expect in this case to get by the fusion

m(@l) <1

ONERA




Low conflict case © ={61,02,03} Shafer’s model

Focal elem. \ bba’s mq(.) % my(.) mo(.) # my(.)
Non-Bayesian BBAs A a 0
AU B 1 — a b1

C 0 1 — by — by
AuBUC 0 bo

Conjunctive fusion

mlg(A) — ml(A)mg(A U B) -+ ml(A)mg(A JB U C) — &(bl + bg)
mlg(A U B) = ml(A U B)mQ(A U B) -+ ml(A U B)mg(A JBU C) — (1 — a)(bl + bg)

Conflicting mass  Kiz = mi2(0) = m (A)ma(C) + m (AU B)my(C)
=a(l—by—b)+ (1 —a)1— by —by)

=1—by— by chosen as low as we want.

[Dezert J., Wang P., Tchamova A., On The Validity of Dempster-Shafer Theory,
in Proc. of Fusion 2012.]
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mlg(A) — ml(A)mg(A U B) + ml(A)mg(A JB U C) — a(bl + bg)

m12(A U B) — ml(A U B)mg(A U B) -+ ml(A U B)mQ(A UBU C) — (1 — a)(b1 -+ bg)

After normalization by 1 — K19 = b1 + by one gets, with DS rule

my2(A) _ a(by + bo)

— —a=m(A
1=Kz by +b, 1A

mps(A) =

mi2(AUB) (1 —a)(by + bp)
1 — Ky by + bo
m mps(.) = [m & mp](.) = my(.) evenif ma(.) # my(.)

m The informative source mo(.) doesn’t count = Dictatorial power of DS rule
m The level of conflict Ki» doesn’t matter in the result.

mps(AU B) =

:1—a:m1(AUB)

This Dempster-Shafer fusion result is very counter intuitive
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Bayesian BBAs

’ml(xl):P(X:xl 21)202 ’mg(xl):P(X:xl 22)205
$ ml(iljg) = P(X = I9 Zl) =0.3 and $ mQ(ZEQ) = P(X = I9 ZQ) = 0.1
\m1($3)2P<X:aZ3 21)205 \mg(fbg):P(X:xg ZQ):
sing informative prior bba/pmt: U mo(a) = P(X = 29) = 0.3
\mo(xg) = P(X = $3) = 0.1
Bayes rule
( 0.2-0.5/0.6 , -
P(x1|Z1N Zy) = : 32-361%% = 0.1667 ~ (.0735
§ P(x2|Z1 N Zy) = 0.52.02.36/%'1 = géggg ~ (0.0441
-0-U. 1 2.0000
\P(CCg Zl M ZQ) = 5 9667 —~ 59667 0.8824
DS rule (mps(z1) = =k - 0.2-0.5-0.6 = 2080 ~ (1,6742
{ mps(x2) = 1=59775 - 0.3-0.1-0.3 = 58 ~ 0.1011
mps(T3) = 15119 0 05 0.4+ 0.1 = gy ~ 0.2247

DS rule is incompatible with Bayes rule in general. [Dezert/Tchamova/Han/Tacnet 2013]
DS rule is compatible with Bayes rule only if the prior is uniform or vacuous.
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Why going beyond DST

b,

Major innovations of DST

- Important paradigm shift for modeling uncertainty
- New appealing mathematical formalism of (quantitative) belief functions

- New combination rule for belief functions (DS rule)

... but BF and DST have never been fully accepted by a part of
scientific community and statisticians mainly because

- Independence between sources of evidence has never been well defined
- Doubts on the validity of DS rule (normalization is controversial)

- Good experimental protocol to validate DST and DS rule is lacking

See Zadeh 1979,Yager 1983, Lemmer 1985, Dubois 1986, Pearl 1988,Voorbraak 1991,
Wang 1994, Walley 1996, Fixsen et al. 1997, Gelman 2006, Dezert & al. 2012, etc
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Recommendation

What we have shown
- the dictatorial power of DS rule to fuse equi-reliable sources of evidence.

- the conflict (high or low) can be totally ignored through DS rule.

- the problem of validity of DST is not due to conflict level, but the absolute
truth interpretation of proposition by Shafer for each source.

- We have proved a logical contradiction in the foundations of DST in

[Dezert J., Tchamova A., On the validity of Dempster's fusion rule and its interpretation as a
generalization of Bayesian fusion rule, Int. J. of Intelligent Systems, Vol. 29 (3), March 2014.]

Recommendation

BF are mathematically appealing and well defined, but don’t use DS rule to
combine them, even in low conflicting situations.
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Reducing troubles with DS:

Some tricks to reduce troubles with DS rule

1) Apply ad-hoc thresholdings on the conflict to accept (or reject) DS result.

2) Modify input BBAs, or apply discounting techniques on sources.
- How to be sure that no problem will occur with DS rule after discounting ?
- How to discount sources when no statistical data is available ?

3) Mix the two previous strategies.

How to better prevent troubles ?

Switch tobetter (more efficient) techniques to fusion vague,
uncertain, imprecise, conflicting quantitative and qualitative information
fusion for static or dynamic problematics.

This is what Dezert-Smarandache Theory (DSmT) proposes.
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DSmT versus DST in shol

e

Shafer’s interpretation: A source can provide absolute truth from partial
knowledge, observation, experience, ...

Such interpretation yields a logical contradiction in DST foundations.

Our interpretation: A source can provide only a relative truth from
partial knowledge, observation, experience, ...

This new interpretation makes differences in the way to
process belief functions.
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DSmMT in short

What is DSmT (developed between 2002 and 2015)

It is a natural extension of the belief function framework to work with

- different models for the frame (not only Shafer’s model)

- with (possibly imprecise) quantitative belief functions

- with qualitative belief functions (expressed as labels)

- new PCR rules of combination, and conditioning

- new probabilistic transformation and method for decision-making support

Why to use DSmT

- provides better results in fusion applications than DST
- deals with static and dynamic frames in a same general framework
- can cover broader fields of applications (because of more flexibility)

Drawback of DSmT

- its higher complexity (from theoretical and implementation standpoints)




DSmMmT models

Free DSm model

No constraint on elements of the frame

Hybrid DSm model

0 0
03
| |z <
. . . o N 82 A
We introduce integrity constraints into A~
the free DSm model. ( 0,
.
M(O)

Shafer’s model = specific hybrid model (5

A \ Y
All exhaustive elements of the frame are known to be (o s
truly exclusive (i.e.a «refinementy is implicitly done) M) ~—

Parts have precise boundaries
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Fusion spaces

FoD O = {64,05,...,0,} Finite set of exhaustive elements
(discrete/continuous/fuzzy/relative concepts)

Fusion spaces

Power sets, Hyper-power set (Dedekind’s lattice) and Super-power sets

207 = §% 2 (©,U,n,¢(.)| > [D® = (0,U,N)| > [2° = (6, 1)

l

0, 0,

I|"% 03
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Hyper-power set

Generation of hyper-power sets

L. 0,61,...,6n € D® Hyper-power set reduces to
classical power set for the
Shafer’s model (when all

3. No other elements belong to D®, except those, ob- elements are exclusive)
tained by using rules 1 or 2.

2.VAe D® Be D®,(AUB)ec D®,(ANB) e D®

The cardinality of hyper-power sets follows Dedekind’s numbers
sequence when the size of the frame increases.

Example (FoD with n=3 elements) © = {0,0,,03} d(n=3)=19

Oéoé@ CV4é92093 058é (91ﬂ92)U(91ﬂ93)U(02ﬂ33) 19 é(91ﬂ92)ue3 16 é(91U03
Oéléelﬂezﬂeg Oé5é((91U(92)ﬂ93 agéel a13é(«91ﬂ03)U92 0417é02U03
CV2é‘91m€2 046é (91 U93)ﬁ92 10 é92 O4142(92m€3)U91 18 é91U92U(93

as = 01N 03 ar = (6, U63) N6, a1 = 03
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Bel(A) = Z m(B) and P1(A) = Z m(B)

BCA
= BNA#)

e
BeG BecG®

where G® is the fusion space (i.e. 22, D®, or §© = 29resined)

One can also define qualitative BBA’s (using labels), and imprecise
admissible (quantitative or qualitative) BBA’s - see [DSmTBookS]
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PCR rules of combinations

s

1 - Apply the conjunctive rule

2 - Calculate the total or partial conflicting masses

3 - Redistribute the (total or partial) conflicting mass proportionally on non-
empty sets according to the integrity constraints one has for the FoD

The proportional conflict redistribution (PCR) can be done in many ways.

- PCR rule #5 (PCR5) proposed by Smarandache & Dezert [DSmTBook3]
- PCR rule #6 (PCR®6) proposed by Martin & Osswald [DSmTBook3]

mi (X)°ma(Y) | ma(X)?my (Y)

1 2
mpcRrs/6(X) = Z m{Xy)ma(Xz) + Z [ml(X) + my(Y) - ma(X) + ml(Y)]
X1,X2€2@ YEQ@\{X}
X1NXo=X XNY =0
PCR5 = PCR6 for combining 2 sources PCR6 is better than PCR5

PCR5 # PCR6 for combining s>2 sources




Example ©6={A, B}

A B AUB mlg(AﬂB:@) :ml(A)mQ(B)+m1(B)m2(A)

mi() | 0.6__03 0.1
ma() | 026503 05 — 0318 + 0.06 = 0.24

21 =0.6-02=0.12
21/0.6 =y1/0.3 = (21 +v1)/(0.6 + 0.3) =0M18/0.9 = 0.2 = { ——3 03=0.0

75 = 0.2-0.12 = 0.024
0.2 = 1,/0.3 = 0.2+ 0.3) =10106/0.5 = 0.12 =P
72/02 = 12/03 = (22 +y2)/(0.2+0.3) / s = 0.3-0.12 = 0.036

MpCR5/6 (A) = 0.44 +{0.124/0.024|= 0.584 With Dempster’s rule
The mass put on

mpcrs/6(B) = 0.27 +[0.06/+0.036 = 0.366 mps(A) ~ 0.579 ignorance with PCR5/6

mps(B) ~ 0.355 _ _
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Example © = {A, B} Shafer’s model

Let’s consider the partial conflicting mass.

ma(A) = 0.2 ma(B) S8 ma(AVB) =05y (BYms(B) =006 108 Bl 0.018
ms(A) = 0.7 ms(B) =0 ms(AUB) =0.2

| 2O GBSy (A)mg(B)ma(B)
With PCR5, one takes  ~ "y = -0y (B) ~ my(A) + ma(B)ma(B)

PCR5 PCR5 PCR5 __ ~
'l b 0.018 O =0.60 - 0.02857 ~ 0.01714
0.6 003 0.6+0.03 0T {azgm% = 0.03 - 0.02857 ~ 0.00086

| L
With PCRG6, one takes mi(A)  mao(B)+ms(B)  mi(A) + (ma(B) + ms(B))

PCR6 PCR6 PCR6 __ _
T g B 0.018 B Ty = 0.6-0.018 = 0.0108
06 ~ 03+01 06+ (0.3+0.1) 0.018 =3 {g;gCRG = (0.340.1) - 0.018 = 0.0072

PCRG6 result is more stable than PCRS5 result for decision making,
and PCRG6 is consitent with frequentist roba estimate.

N ONERA
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Advantages PCR5/6 rules work with any conflict, and outperfom DS rule.

Drawbacks  Complexity, non-associativity

Why PCRE6 is considered better than PCR5 and DS rule

PCRG6 can be used to estimate correctly frequentist probas in
random binary experiment. DS and PCR5 do not work.

[Smarandache F., Dezert J., On the consistency of PCR6 with the averaging
rule and its application to probability estimation, Proc. of Fusion 2013.]
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Complexity of DSmT

N

N
N\

~\",
LN

RN
L Y

——

Complexity of BF (129] = 2") < (|D®| = d(n)) < (]2€r<7| = 22" 1)
O] =n [[2°]=2" [ [DO[=d(n) [ 2%/ [=2"""
2 4 5 23 =8
3 8 19 27 =128
4 16 167 215 = 32768
5 32 7580 231 = 2147483648

How to reduce complexity for combining BF

Approximate BBA by simpler ones

Implement fusion rules with sampling techniques [DSmT Book 3,Chapé]

Use simpler fusion rules
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Probabilistic transformatiol

Approximate a BBA by a simpler one (probabilistic transforms)

Simplest method keeps only singletons as focal elements and
normalize, but we loose information on partial ignorances

Pignistic transform redistributes mass of partial ignorances equally
to singletons included in them [Smets 1990]

piay= 3 X0ALL )

Xe29 X‘

DSmP transform redistributes mass of partial ignorances proportionally
to masses of singletons included in them [Dezert-Smarandache 2008]

Z m(Z)+e-C(XNY)
ZCXnY
= 2(2)=1
VX e (C° ] DSmP.(X) = - m(Y)
\ { } )--'52(;** Z m(Z)+¢e-C(Y)
: . ZLY
¢ = () 1s a tuning parameter < C(Z)=1

Qualitative BetP and DSmP are possible. Other transforms exist.

33




Example BetP versus DSmP 01

m(.) | 0.3

Shannon’s entropy H#(P)2 - Zn:P{a,-}logz(P{ei})

(

(
With BetP { BetP(61) = m(01) + 3m(01 Uba) = 0.6
BetP(02) = m(02) + 3m(6; U ) = 0.4

H(BetP)=0.9710 bits  Bigger entropy

m(61)+e
) + m(@l)—l(—én)(ig)-l—Qe
) + w0

(
(
With DSmP < Dsmpezo,o(n(@l) = m
(
(

\

H(DSmP)=0.8125 bits Lower entropy

\BetP(@l U 92) — m(@l) -+ m(6’2) -+ m(@l U (92) =1

Shafer’s
model
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Distances between two BBAS

[Han D., Dezert J., Yang Y., Belief interval Based Distances Measures in
the Theory of Belief Functions, to appear in IEEE Trans. on SMC, 2017.]

1993 - Tessem’s distance - Not a strict metric

dr(m1,ma) = glcag {|BetP1(A) — BetP2(A)|}

2001 - Jousselme’s distance - A strict metric proved in [Bouchard et al. in 2013]

AN B|
AU B|

Jac(A.B) =

d,](ml,mg) — \/1 g (m1 — mg)TJac (m1 — mg)

2
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New distances between 2 BBI

L

2014 - Euclidean belief interval based distance [Han-Dezert-Yang 2014]

on 1 | , B
dpr(mi,ma) = \/Nc - Z._l [d!(BI(A;), BIs(A:))]? N, = 1/2" 1

2014 - Chebyshev belief interval based distance

dS; (m1,mg) = max {d’ (BI1(A;), BI:(A;) )}

A:CO,i=1,....

using Wasserstein’s distance of interval numbers

b bo1? 1[by — by — as ]°
dl([al,bl],[az,bzlb\/[a1+ L_ 2 2] +—[ L2 “2]

2 2 3 2 2

because belief intervals Bl=[Bel(.),PI(.]=[a,b] are just interval numbers.
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Example of distances resul

b
—_——
S—
|
~
~
[—
—
e,
)
%
N
S—
|
.
~

Example mq({01}) = mqi({02} |
7712({91}) = 771-2({92}) — 7712({93}) — 01 77‘12(9) = 07
ms({61}) = ms({62}) = 0.1, my(03) = 0.8.

Distance types| dJ dr dr de | dpr  dp;

d(mi,mso) 04041 O 0.5833 0.20000.2858 0.2333
d(mi,m3) [0.4041]0.4667 0.6364 0.6667 0.4041 0.4667

Jousselme distance

seems not very reasonable (m2 makes no preference for choice,
whereas m3 prefers the 3rd element)

Tessem’s (BetP) distance

not intuitively acceptable because m1 different of m2 but dT(m1,m2)=0.

New belief interval distances

result makes more sense because  d(mi,mo) < d(my,ms)
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Part 2

Decision-Making with Belief Functions
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Decision-making with BE

Classical historical methods They don’t exploit all information

Pessimistic attitude: Max of Bel(.)

0, = arg max Bel(0;)

[

Optimistic attitude: Max of PI(.)

0~ = arg max Pl(0;)

1
Compromise attitude:

Use a probabillistic transformation to estimate a subjective proba
measure P(.) in [Bel(.),PI(.)]. Typically max of BetP, or max of DSmP.

0;« = arg max P(6,)
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New method based on distai‘f.

\
\
’ -~
”
)/ '

N\
s

AR
\

We use the following distance

an _ 1 ‘ - —
d§1(7n.1,7n.2)=\/NC-Z d!(BIi(A:), BL(A:))?  N.=1/2""1

i—1

with Wasserstein’s distance of interval numbers

I B ar+bi az+by]?  L[bi—ai  by—ay]’

Decision rule with its quality Mass focused on X only

A e

X =arg min dgr(m,mx)
X e29\{0}

higher is g, better is the
dpr(m,my) decision. g=1 is max if

o numerator is zer
ZXGQQ\{Q)}dBI(mamX) umerator IS zero

[J. Dezert, D. Han, J.-M. Tacnet, S. Carladous, Y. Yang, Decision-Making with Belief
Interval Distance, in Proc. of Belief 2016.]

ONERA




Mono-criterion case

States of the nature

S e 8 o &
Al (Cll Cll Cln\
Alternatives : 5 | |
Alon o ¢ o O |=c <dm benefit/payoff matrix

How to select the best alternative A" given C matrix
and the knowledge one has on the states of the nature?
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Decision frameworks

=
o - _

Decision under certainty If we know the true state of nature is S; take
A* = Aj with " = argmax{C;;}

Decision under risk If we know all probas pj=P(S;), then compute
expected benefits E[C;] =) p;-Ci; and take
J

A* = Ap with % = argmax{F[C;]}
Decision under ignorance

If we don’t know probabilities p;=P(S;), use Yager’'s OWA
(Ordered Weighted Averaging) approach (1988).

Decision under uncertainty

If we have only a BBA defined on the power-set 25, where S={S1, So,..., Sn},
Yager proposed extended OWA.

[R. Yager, On ordered weighted averaging operators in multi-criteria decision making,
IEEE Trans. on SMC, 18:183—-190, 1988.]
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Decision under ignorane

Yager’s OWA method pi=??? => P(S)) are unknown
Sy S e S,

A /C1 - Cip - Cin
Alternatives | 4i| Ca -+ Cy v Ca | =C

Ay \Cp -+ Cy - Cp

Step 1 (Decisional attitude) Choose a normalized set of weights
Wii, ..., Win With wj1 +...+ win=1

Step 2 (Evaluation) Compute the weighted average of ordered benefits for
each row (alternative) i=1,2, ...q

V;; é OWA(CZ';[, Cq;g, ce ey Cfm) = Zwij . bij
J

bjj is the jth largest element in the collection of benefit {Ci1, ... Cin}
[bi1,....bin] = reorder of ith row by decreasing values

Step 3 (Decision) Select A" =A;» with " £ argmax{V;}
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Decision under ignorance (ex:

@ Pessimistic choice | (we take the min value per row)

0] Vi = OWA(10,0,20,30) =0
0
W = 0 Vo = OWA(1, 10,20,30) = 1
1 v, = OWA(30,10,2,5) =2 <& Best choice = As

®

Optimitic choice

- Vi = OWA(10, 0,20, 30) = 30 _
1 ] All alternatives have

pi=P(S;) are unknown Vy — OWA(1, 10, 20, 30) — 30

U same score
Vs = OWA(30, 10, 2, 5) = 30
/ 0 3 ( )
Si Sy Sy S e
A (10 0 20 30\ (3) [ Huwiczohoice ] a = 0.3 (balance between min and max values per row)
C= 4,1 10 20 30

A;\30 10 2 5 - o1 Togl Vi=OWA(10,0,20,30) = 9

N\ W= 8 _ 8 Va = OWA(1, 10,20, 30) = 9.7

1-a| |07 V3=0WA(30,10,2,5) =104 {= Best choice = As

@ Normative choice

V, = OWA(10,0,20,30) = 60/4 = 15

»
| 1/4 Vs = OWA(1,10,20,30) = 61/4 {1 Best choice = Az
}?j Vs — OWA(30, 10,2, 5) — 47/4
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Yager’s OWA method We have only a BBA m(.) over 25
of states S={S1, So,..., Sn}

S - 8 - S,

Ay /Chy C1 C4
Alternatives 541(011 Gy cm)c

Ay \Cy -+ Cy - Cyn

Step 1 (Decisional attitude) Choose weights wiq, ..., Win with Wit +...+ Win=1

Step 2 (Evaluation) For each benefit subrow Mix associated to a focal
element Xk of BBA m(.) compute the benefit of Vik of Ai by

Vi = OWA(M@k) and M = {CZJ|SJ < Xk}

Compute generalized expected benefits E[C Zm (X&) Vik

Step 3 (Decision) Select A*

A with " = arg maxE[C’z-]
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Decision under uncertainty (exé

States of the world Alternatives
S ={51,55,853,54, 55} A={A1, As, Az, Ay}
m(S;US3USy) =0.6 m(S2US5) =03  m(S1USUS3US5,US5)=0.1
| — | | — | | — |
X1+ partial ignorances — X, full ignorance— X3
S1 S35y
My | [7 12 13
My | (125 11 _
MX) = =19 3 10| sub payoff
S G Ma] [6 11 15, matrices
Ay /7 5 12 13 6 S, S
C:Ag 12 10 5 11 2 My ] 5 6]
Al 9 13 3 10 9 | Moo 10 2
Ay, V6 9 11 15 4 M(Xs2) = Mo ~— 113 ¢
My | 9 4
51 52 S3 Sy Sy
M3 7 5 12 13 6
,, | Moy |12 10 5 11 2|
MXs) =10l = o 13 3 10 9| =€
| Mys | 6 9 11 15 4
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Pessimist decision Pessimistic attitude  One takes the min value by row

S1 Sy S4/l
Y .

]\[11 12 13 0 ? X1 =51US53U8,
M(Xy) = %21 _ 192 g }é W= H V(X1) = | m(X;) =(0.6)
31 1
My 6 11 15 6]
5SS B
_A/jm_ S '? Xo=5US5
L ]\“’[22 L 10 2 0 V(XQ) = m(XQ) =10.3
M(X2) =l = 113 9 W = [1 Z
M| |9 4 4.
) ) _Sl SQ Sg S4 S5_ —O" .
Mis 7 5 12 13 6 0 @ X3=5US5US3US54US5
M) =32 = e 13 3 10 o =€ 01 V(X = |5] m(Xs) =0.1)
M| |69 11 15 4 i 4
A [ElC] 6.2] (7)0.6 53034 5-0.1=62 <3 |41 Best choice = A
Ao |E[Co]| _ 3.8
As ECg — ,; (Xk:) V(Xk:) 4.8
Ay |ElCy)] T 5.2)
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Optimist decision

DU
Moy
Mz

| My

M
Mss
M3

[ M3 |
Mog
M3

Mg

51 S35y
7 12 13
12 5 11
9 3 10
6 11 15

s s
o

10 2
13 9

- 9 4_

S1 52 Sy
7 5 12
12 10 5
9 13 3

6 9 11

13
11
10
15

Optimistic attitude

= O N

(10.9]
11.4
11.2
13.2

!

1

-

i)
12
V(X)) = |10
@
10
V(Xa) = |19
-9—

-

0

W =10
ol V(X3)=

O-

One takes the max value by row

= 51 US3U S5,

X1
m(X1) =0.6)

SQUS5
(XQ) =0.3)

-® X3 =5,USyUS3US4U S5
12| m(X;) =0.1)

13

15

Best choice = A4

13)-0.6 ¥6)X0.3+13 (0.)= 10.9
KA | A

(A4 is also chosen
with normative attitude)
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Improvement of OWA meth

Drawbacks of Yager’s OWA approach
Result strongly depends on the decisional attitude. How to avoid this?

Solution

Use jointly the two most extreme attitudes (pessimistic and optimistic)
to be more cautious.

Cautious OWA (COWA) method [Tacnet-Dezert 2011]

Pessimistic and optimistic generalized expected benefits allow to
build belief intervals, and to get BBAs that are combined with
PCRG6 to get combined BBA to take final decision..

[Tacnet J.-M., Dezert J., Cautious OWA and Evidential Reasoning for Decision Making under
Uncertainty, in Proc. Of Fusion 2011.]

Fuzzy COWA method (simpler than COWA)

[Han D., Dezert J., Tacnet J.-M., Han C., A Fuzzy-Cautious OWA Approach with Evidential
Reasoning, in Proc. Of Fusion 2012, Singapore, July 2012.]
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Part 3

Multi-Criteria Decision-Making Support

* DSm-AHP
o« BF-TOPSIS
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Classical AHP method

'_-,
QR

Analytic Hierarchy Process (AHP) is a Multi-criteria
decision-making method developed by Thomas Saaty
in 1980’°s based on the derivation of priority from preferences.

[T.L. Saaty, The Analytical Hierarchy Process,McGraw Hill, 1980.]
Principle of AHP

1) The multiple criteria are ordered in a hierarchy of importance. For
each criterion, a set of preferences of the choice is established from

pairwise comparison matrices.

2) Combine these preferences to get the global ranking of the solutions
(in classical AHP, this is done by the weighted arithmetic mean).

3) Final decision-making based on the result of step 2.

ONERA




Example (Four cars and 3 criteria): {Cars} = ©= {A,B,C,D}

. . _ _ _ SEROT _ Priorities = Normalized
{Crlterla} B {Cl = Fuel CEONOMY: 02 o Rellablllty, 03 B Style} Perron-Frobenius vector
. . . 1/1 1/3 4 /17 normalized eigenvector 10.2797 C2 is the
Ranking criteria: M = [3/1 1/1 5/1| e w — |(.6267 |«m— MOt
1/4 1/5 1/1| associated to largest iImportant
eigenvalue _0-0936_ criterion

M21=3/1 means «Reliability criterion is 3 times as important as Fuel Economy criterion».
M23=5/1 means «Reliability criterion is 5 times as important as Style criterion».

C C> C;

Ranking cars w.r.t. C;
{0.2500 0.4733 0.11207 carA

A similar procedure is applied __10.1304 0.0611 0.4435 car B
to rank cars for each criterion _> [W(Cl) W(C2) W(CS)] — |0.5109 0.1832 0.0565

0.1087 0.2824 0.3871 car C

car D

Final AHP result

"0.2500 0.4733  0.1129]] (0.37717] < CrAISTE

0.1304  0.0611  0.4435 | 8'2;2; ~ lo.1163 best cholce
0.5109 0.1832  0.0565 0 oaas| = |o0.2630
(0.1087 0.2824  0.3871 [0-0R8] 0.2436
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Extension of Analytic Hierarchy Process (AHP) with BF,
PCR rules and importance discounting technique to take into
account uncertainty (previous attempts by Beynon in 2000).

[Dezert J, Tacnet J.-M., Batton-Hubert M., Smarandache F., Multi-criteria decision making
based on DSmT/AHP, Proc. of Belief 2010.]

[Dezert J., Tacnet J.-M., Evidential Reasoning for Multi-Criteria Analysis based on DSmT-AHP,
Proc. of ISAHP 2011 .]

Principle of DSm-AHP

1) Construction of uncertain comparison matrices.
Take as BBA, the normalized Perron-Frobenius vector of each matrix

2) Use PCR6, to combine BBA's to get a final priority ranking.
3) Decision-making from combined result (max of Bel, PI, BetP(.),

DSmP, etc, or by min of distance).
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Importance discounting

Reliability discounting Importance discounting

<fma(X):a.m(X)7 for X # © + {mg(X):ﬁ-m(X), for X # ()

Mma(©) =a-m(O)+ (1 — a) ma(0) = 8- m(0) + (1 - B)
|

\

v

PCR5/6 fusion rules

Use importance discounting technique combined with non normalized
version of PCR5/6

mporsy(X) = > mi(Xi)ma(Xo)+ Y |

BB factors = Importances of criteria

then a classical normalization applies.

Note: Demspter’s rule doesn’t react to importance discounting!
[Smarandache F., Dezert J., Tacnet J.-M., Fusion of sources of evidence
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DSm-AHP example

Example (Three cars and 2 criteria): {Cars} =0 = {4, B,C}

{Criteria} = {C; = Fuel economy, C5 = Reliability}

Let us assume the following (uncertain) comparisons w.r.t each criterion

- I ? B L(-)J C o 0.0889
M(Cl) — | Buc | o 1 m—p-  w(C1)~ |0.5337 Elem. of 2° | mci(.) | me2(.)
© 3 1/2 0.3774 0 0 0
A 0.0889 | 0.5002
* B 0 0
AUB 0 0.1208
_ i C 0 0
A B A C B C - .
1\/[(02) A 1 5 5 L:; 0.5002 AUC 0 0.1222
— B 1/2 1 1/2 1/5 0.1208 BuUC(C 0.5337 | 0.2568
» w((C2
soC | 1 i . 0 (€)% 10,1222 AUBUC | 0.3774 0
i - 0.2568 |
We need to fuse these bba’s taking into account the importances of criterion C4 and Co»
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DSm-AHP example (cont:

.-
-
7

N
\
,i.' - o

Elem. of 2@
g Final decision based on max of
ASB Elem. of © Bel(.) BetP(.) Pl(.)
C A 0.3837 0.4068 0.4298
AUC B 0.1162 0.3105 0.5049
BUC C 0.0652 0.2826 0.5000
AU BUC
Case 2: C1 and C2 have different importances
{Criteria} = {C1 = Fuel economy, C; = Reliability}
importances

user preferences

. o 0.2500 — (1
Ranking criteria: M = [éﬁ ifﬂ — W= [0.7500 — Bz]

We apply importance discounting to get bba’s
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DSm-AHP example (co

Case 2: C1 and C2 have different importances (cont’d)

Result with Dempster’s rule

importance has no impact !!!!

Result with importance and PCR5/PCR6

Elem. of 2© mPC’R5® (.) m%oérﬁ%éze ()
1] 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351
AU B 0.0159 0.0461
C 0.0122 0.0355
AUuC 0.0161 0.0469
BUC 0.1020 0.2963
AU BUC 0.0065 0.0188

Result with direct AHP using bba’s

0 0
0.0889  0.5002
0 0
0 0.1208 0.25
mAHP(~) — 0 0 X [0.75} —
0 0.1222
0.5337  0.2568
| 0.3774 0

-

e N
-, A\ .\
Ch
AN
'.Y \
n X
.I
N
S
7
S

Elem. of 2° | mpg() | mpg.w()
[ 0 0
A 0.3588 0.3588
B 0.0908 0.0908
_> AUB 0.0642 0.0642
C 0.0918 0.0918
AucC 0.0649 0.0650
BuUC 0.3294 0.3294
AUBUC 0 0

Final decision based on max of

DSmT/AHP reduces uncertainty

U(X) = PI(X) — Bel(X)

Elem. of © Bel(.) BetP(.) Pl(.)
A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974
Final decision based on max of
0.3074 Elem.of © | Bel(.) | BetP(.) | PIL(.)
0 A 0.3974 0.5200 0.6741
00906 B 0 0.2398 | 0.5110
0.0917 C 0 0.2403 0.5121
0.3260
| 0.0944 |
I Elem. of © U (.) with AHP U (.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619
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BF-TOPSIS Methods

[J. Dezert, D. Han, H. Yin, A new belief function based approach for multi-criteria
decision-making support, in Proc. of Fusion 2016.]

[J. Dezert, D. Han, J.-M. Tacnet, Multi-Criteria Decision-Making with Imprecise Scores
and BF-TOPSIS, in Proc. of Fusion 2017.]

How to choose an alternative (make a choice) among a known set of
alternatives based on their numerical scores ?

What we have Alternatives: A = {Ay, Az, ..., Au} (M > 2)
Criteria: C =2 {Cy, C2,...,Cn} (N > 1)
Score matrix: S = [Sj]

Difficulties

Scores are given in different units and different scales (how to normalize
them?)

Criteria C; do not have same weights w; of importance in general.
w; €[0,1],j=1,...,Nand >, w; = 1.
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BF-TOPSIS Methods

Some facts

» Most of existing methods require score normalization at first, but ERV (Estimator
Ranking Vector) method [Yin et al. Fusion 2013].

» They all suffer of rank reversal problem (the rank is changed by adding or
deleting an alternative) which is a serious drawback.

» None of them makes consensus among users.

» TOPSIS (technique for order preference by similarity to ideal solution) method is
widely used but it requires data normalization.

Our goals

» Develop a new TOPSIS method without score normalization to be more robust to
rank reversal based on belief functions (BF).

Our contribution
» A new generic approach for MCDM, called BF-TOPSIS.

» A new method for building BF from unnormalized scores.
» Four BF-TOPSIS methods are proposed (having different complexities).
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BF-TOPSIS Methods

How to construct BBAs on FoD of alternatives A = {A¢, Ay, ..., Ay} from the given
score matrix S £ [S;] ?

We define the positive support of A; based on all scores values of criteria C; to
measure how much A; is better than other alternatives as follows

Sup;(A;) = > | Sij — Skjl
k€{17M}|Skj§SIj

We define the negative support of A; based on all scores values of criteria C; to
measure how much A; is worse than other alternatives as follows

Infi(A;) & — > |Sij — Skl
k€{1,...M}|SijS/j

We prove that the inequality always holds (see Theorem and its proof in the paper)
SUPj(A,’) <q_ Imj-'(A,-)
AjmaX Ajmin

iff A 2 max; Sup;(A;) and A{nin = min; Inf;(A;) are different from zero.
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BF-TOPSIS Methods

Belief modeling

The belief of A; and of A; are defined by

Sup;(A; . Inf(A
Bel;(Ay 2 SPIA) oy Ber(ay 2 MHA)
/ J / j

Amax Amin

If A{nax = 0 (there is no evidential support for A;), then Bel;;(A;) = 0.
If A= 0 (there is no evidential support for A;), then Bel;(A;) = 0.

By construction, Bel;(A;) and Be/,-j(Z\,-) belong to [0, 1], and thanks to previous
inequality one always has Bel;(A;) < (Pli(A;)) = 1 — Belji(Aj)).

BBA construction

From belief intervals [Belji(A;), Pl;j(Aj)], one get M x N BBAs mj;(-) by taking
m;i(A;) = Beljj(A))
m,/(/z\,) = Bel,j(,z\,) =1 - PIU(A/)
m,j(A, U /z\,) — P/U(A/) — Bel,j(A,)
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BF-TOPSIS Methods

How to use BBAs matrix M = [(m;i(A;), m;(A;), m;(A; U A;))] to rank alternatives?

e Direct fusion of BBAs by DS or PCRG6 rules does not work efficiently (see example 1)
e We develop a modified TOPSIS approach with BF = 4 BF-TOPSIS methods.

BF-TOPSIS1 method
For each A;, we compute the weighted average distances to ideal best and worst
solutions, and from them the closeness measures C(A;, A°S!) to APest,

BF-TOPSIS2 method
For each criteria C;, we compute the closeness measures C;j(A;, A°®) to ideal best

APest gplution, and then we make the weighted average of closeness measures to get
C(A;, APest),

BF-TOPSIS3 method
For each A;, we fuse BBAs of the same row of matrix M with PCR6, then compute
distances to ideal solutions to get relative closeness measure to ideal best solution.

BF-TOPSIS4 method
Same as BF-TOPSIS3 using ZPCR6 (PCR6 with Zhang’s degree of intersection).




BF-TOPSIS Methods

BF-TOPSIS1 method

Step 1: From S, compute BBAs m;(A;) m,j(Z\ ), and m;(A; U A))
Step 2: Set mx**!(A;) £ 1, and m#°"*'(A;) £ 1 and compute distances dg,(m;;, m**

ij
and d5,(mj, mWOfSt) to ideal solut|ons
Step 3: Compute the weighted average distances for A;, i =1,..., M

N
dbest(Ai) Py Z w; - dBEI(mlj’ best)
j=1

dworst(A ) Ay Z W/ dBI(mI/» worst
Jj=1
Step 4: Compute the relative closeness of A;, i = 1, ..., M, with respect to ideal best

solution APest
dworst(Ai)

C(AI ) AbeSt) =

dworst( Ai) + dbest( Ai)

Step 5: Sort C(A;, A°®!) < [0, 1] in descending order (larger C(A;, A°°St) means higher
preference).
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Example 1 (Mono-criteria): Preference order — greater value is better

C mip(Ai) mig(Ai) mi (AU A)
Ai T 10 7 A; | 0.0955 0.5236 0.3809 A
As | 20 A, | 0.1809 0.4188 0.4003 Ao
As | =5 Az | 0.0102 0.8115  0.1783 As
S£ At| 0 | =M= A,| 00273 0.6806  0.2921 Ay
As | 100 As | 1.0000 0 0 As
A | —11 Ag 0 1.0000 0 Ag
A7 L 0 | A; | 0.0273 0.6806  0.2921 | A7

Preferences order

Ranking methods

As = Ao = A1 > (A4 ~ A7) = Az > Ag
As = A = Ay = (A4 ~ A7) = A3 > As

By direct ranking
By BF-TOPSIS

By DS fusion
By PCRG6 fusion

A5>(A1 NAQNA3NA4NA6NA7)
As = Ao = A1 = Ay = (A3 ~ Ag ~ A7)

C(A, Ao

0.1130
0.1948
0.0257
0.0485
1.0000
0
0.0485

Rankings based on DS and PCRG6 fusion do not match with direct ranking even in

mono criteria case because of dependencies of BBAs in their construction.




BF-TOPSIS Methods

Example 2 (Mono-criteria): Non informative case

When all scores are the same:
— all BBAs are the same and equal to the vacuous BBA

— all closeness measures to best ideal solution are equal

Ci mj1 (A; U A;) C(A;, Abest)
A-| S | Aq i 1 ] A1 I C ]

S2 A | s |=M2 A 1 = A c
Av | S _ el 1 | Au | c ]
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Aj 36 42 43 /70
A | 25 50 45 80
S Ay | 28 45 50 75
A, | 24 40 47 100
As [ 30 30 45 80 |
Set of alternatives TOPSIS
{A1, Az, A3} Az = Ax = A
{A1,A2,A3,A4} As = Az = A1 = Ay
{A1,A2,A3, A4, A5} | As = Ao = Ay = AL = As
Rank reversal

Set of alternatives

BF-TOPSIST & 2

BF-TOPSISS & 4

{A'I ) A27 A3}
{A'I ) A27 A37 A4}

Ao — Az > Aj
Az > A = Ay >~ A4

Az >~ As > A
Az > As >~ Ay > A4

{A1, A, A3, Ag, As }

Az = As = Ay = A1 - As

Az = Ao = Ay > A1 >~ Asg

Rank reversal

No rank reversal
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