

# de l'UMR SAS – INRAE – L'institut agro Rennes Angers







#### Historique



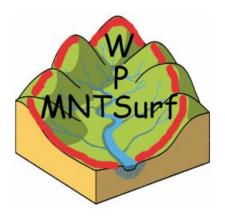




- > 2007 : AGRO-TRANSFERT Bretagne Les zones humides potentielles en Bretagne
- 2009 : GéoBretagne / geOrchestra
- 2010 : GéoSAS & VIDAE
- > 2011: 1er WPS: Bassin Versant
- 2013 : 1<sup>er</sup> GEOCOM à Agrocampus Ouest
- ➤ 2014 : IDG CATI INRA
- 2015 : Module IDG Enseignement M2 TELENVI
- 2016 : Formation e-learning IWDS
- 2021 : Changement domaine geowww->geosas.fr
- 2023 : IDG INRAE


















### Services et technologie



Proxy + CAS

Site éditorial geosas.fr

Reporting Monitoring





Service données géographiques

GeoServer

Catalogue

Visualiseur expert

sViewer

Gestion utilisateurs

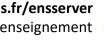
Reporting

GeoNetwork V 3.8.2

Mapfishapp **Console Analytics** 

Visualiseur simple

**LDAP** 


V 2.22.2

geosas.fr/geoserver loadbalancing + admin



- geosas.fr/tntserver Inputs WPS TNT
- geosas.fr/georverwps **Outputs WPS BV**
- geosas.fr/ensserver dedié enseignement





INRA



Transfert fichiers

Visualiseur thématique





Service calcul / transformation



Service données temporelles







#### Normes et standards





V 2.0.0

#### Service données géographiques

#### Catalogue

#### Service calcul / transformation



SensorThings

V 1.0





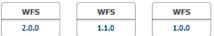











CSW

- ISO 19119
- ISO 19110



















WPS 1.0.0

2.0.1

2.0.2











#### Ressources humaines

- ➤ Hervé : Infra GéoSAS
- ➤ Mario : dév de STEAN
- > Christophe : animation et dév de SO FAIR
- > Tom : dév des WPS, API OGC, SO FAIR, viewers, ...



### Information géographique et plus si affinité

**18 831** couches

237 métadonnées

9 services

21 instances

Service données géographiques

Catalogue

Service calcul / transformation

Service données temporelles











6

17

geosas.fr/geoserver INPIRE + FAIR géo de l'UMR SAS

geosas.fr/demserver

MNT et dérivés 🌑

geosas.fr/tntserver

Inputs WPS TNT > geosas.fr/georverwps

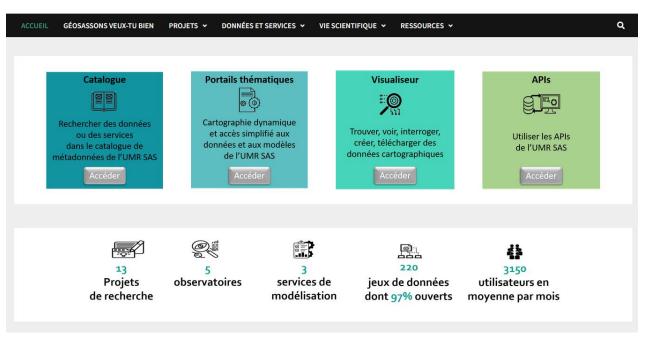
17500 Outputs WPS BV

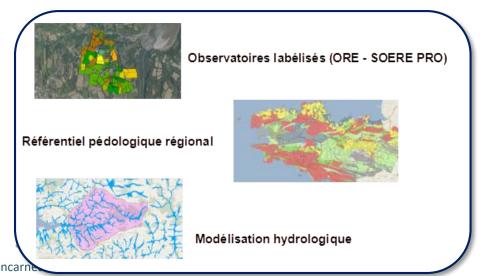
> geosas.fr/ensserver Dedié enseignement 🌑

225 MD de données

- 4 MD de service
- 2 MD de transformation
- 4 MD de collections
- 4 MD cat. d'attributs

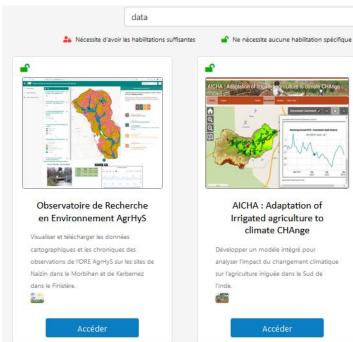
450 000 000


observations












INRAe

#### GéoSAS : portails thématiques







Application en cours de construction



INRAe



Portail cartographique permettant de

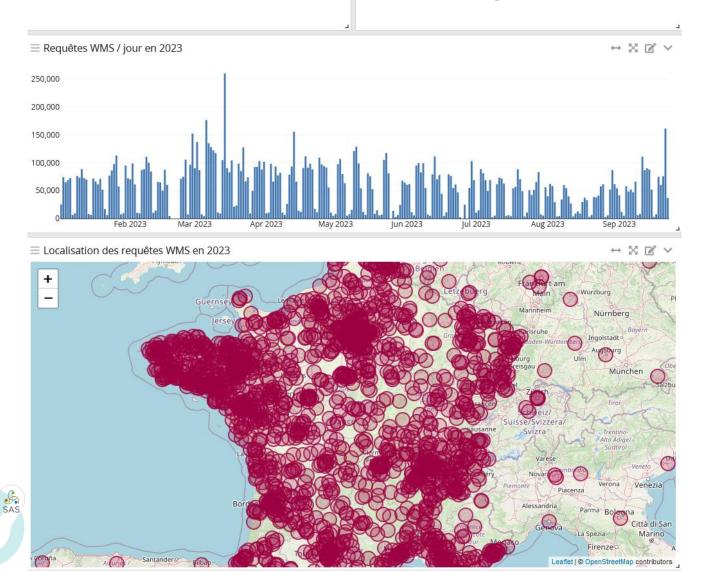
graphes relatifs à l'évolution des

versant en Bretagne.

générer et visualiser automatiquement des

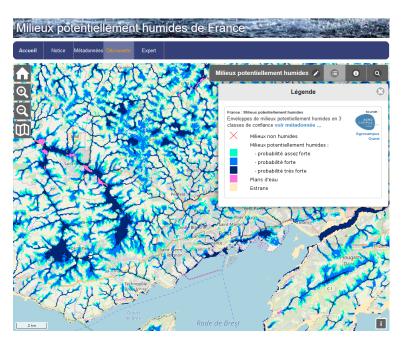
concentrations et flux d'azote par bassin






#### Réutilisation

 $\equiv$  Requêtes WMS en 2023  $\leftrightarrow \ \boxtimes \ \bigvee \ \equiv$  IP différents 2023  $\leftrightarrow \ \boxtimes \ \bigvee \$ 


14,550,223

18,820



#### Les Zones Humides Potentielles, notre locomotive











IDS Ouest - Concarneau

### >

### Retour d'expérience – SAGE Vilaine

#### 16 mai 2023



#### Utilisation des outils GEOSAS.fr au sein d'Eaux & Vilaine

webinaire INRAE





Anthony DE BURGHRAVE Chargé de mission qualité d'eau et protection de la ressource







### >

### Retour d'expérience – SAGE Vilaine

et des étiages









La gestion des grands ouvrages



Le maintien de la biodiversité



La Protection du

#### NOS MISSIONS

La préservation et la restauration des Milieux Aquatiques



La reconquête du bon état écologique de l'eau



La sécurisation de la production d'eau potable







### ➤ Retour d'expérience — SAGE Vilaine

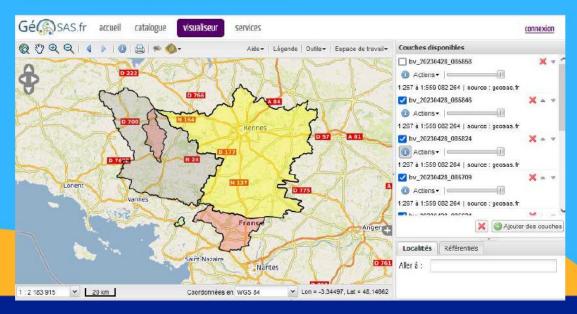
#### Révision du SAGE besoin d'évaluation



Un outil de planification



Protection et restauration des milieux,


| Niveau<br>d'effort | Sous-bassins concernés                                                                                                                 | Objectif de concentration (percentile 90) | Objectif de diminution<br>du flux |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------|
| <b>A</b> 3         | Oust amont, Lié, Oust moyen                                                                                                            | 40 mg/l                                   | 1 150 tonnes soit 28 %            |
| 2                  | Claie, Ninian, Yvel, Seiche, Semnon                                                                                                    | 40 mg/l                                   | 1 130 tonnes soit 23 %            |
| 1                  | Meu, Ille et Illet, Chevré, Vilaine Amont,<br>Vilaine médiane, Flume, Chère, Don, Isac,<br>Vilaine aval, Arz, Oust aval, Aff, Estuaire | 35 mg/l                                   | 970 tonnes soit 14 %              |



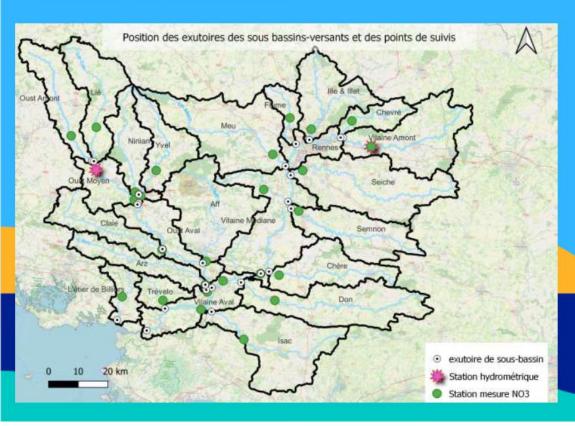


# ➤ Retour d'expérience — SAGE Vilaine





calcul de l'évolution des flux de nitrates au niveau des différents sous-BV


→ Définition de BV amont des points exutoires avec visualisateur / MNTSurf





# ➤ Retour d'expérience — SAGE Vilaine

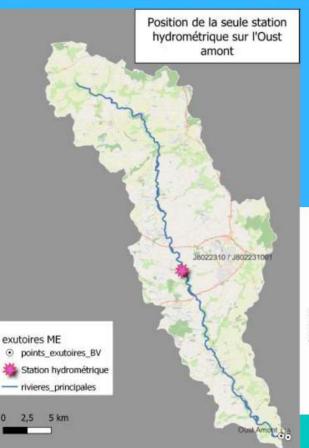




calcul de l'évolution des flux de nitrates au niveau des différents sous-BV

→ Récupération sous R des débits journaliers au niveau des exutoires de sous BV via l'API SIMFEN

https://github.com/AnthonyDEBUR/calculeflux


→ Exception : axes dont le débit est contrôlé par des grands barrages de régulation des crues et des étiages (recours à BD hydro)





#### Retour d'expérience – SAGE Vilaine

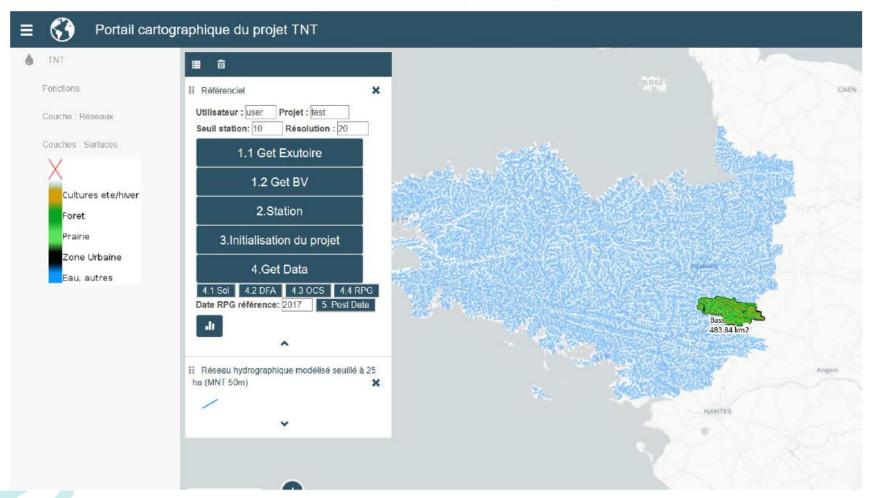
### Intérêt des services GEOSAS



- Rapidité et facilité d'accès à la donnée
- SIMFEN « bouche les trous » dans chroniques de débit de BD hydro - disponibilité de débit en tout point

Débit moyen sur n jours (n=1, non glissant) - Données les plus valides de l'entité - J744 3010 - La Seiche à Amanlis - du 01/01/2010 00:00 au 31/12/2022 23:59 (TU) BD HYDRO: pas de données de débit sur cette station avant mi-2013 30 000 ğ 20 000-










### Retour d'expérience – Hydrologue INRAE

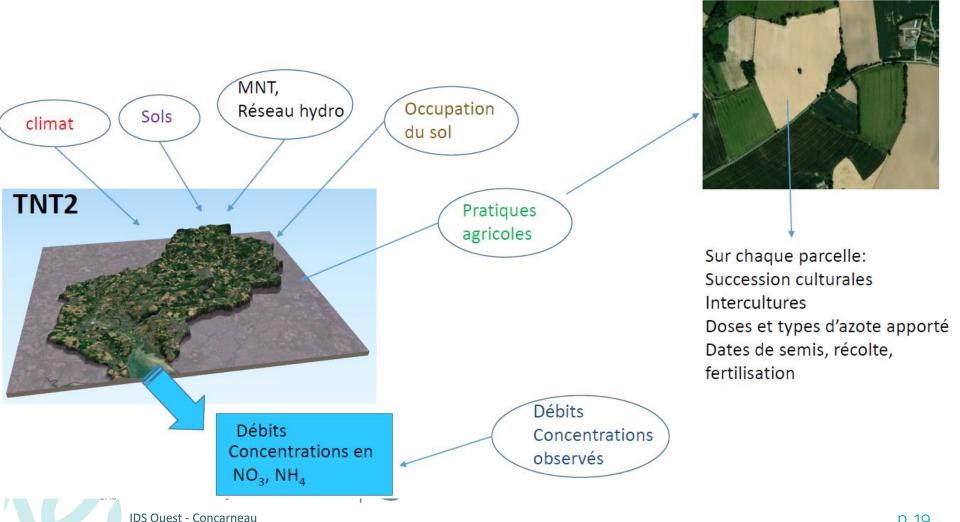
# Co-construction du portail cartographique TNT2 et des services associés



#### Retour d'expérience – Hydrologue INRAE

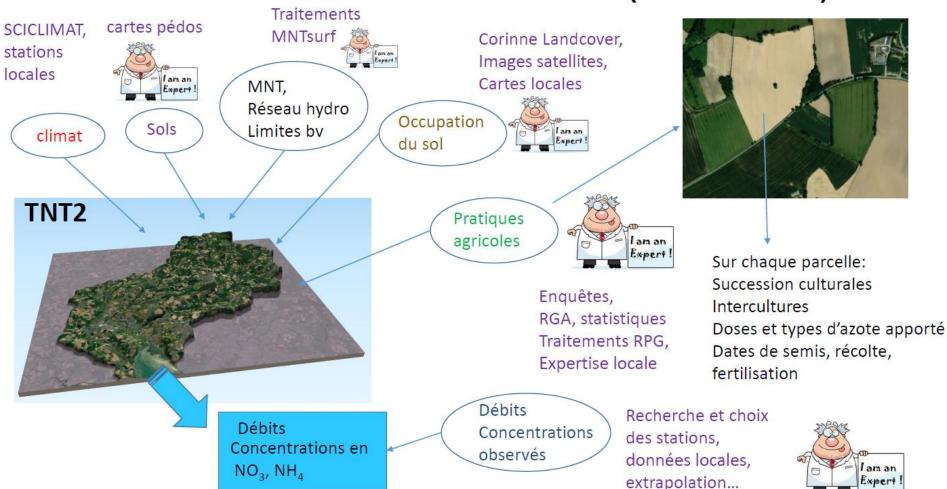
## TNT-Geosas, un futur block buster?

#### Le pitch:


- TNT2, un méchant monstre de modélisation, épuisait les finances et le temps de ses parents car il était très gourmand en données difficiles à collecter, traiter, formater. Jusqu'au jour où ils s'adressèrent à des sorciers informatiques (computer wizards, en anglais)...
- Les personnages
  - Tom Loree, informaticien génial.
  - Patrick Durand, chercheur INRAE, concepteur de TNT2
  - Hervé Squividant, ingénieur Institut Agro, concepteur et chef d'orchestre de **GEOSAS**
  - François Oehler, fondateur société SCHEME, co-developpeur et utilisateur de TNT2
  - Wafa Malik, post doctorante, beta-testeuse



26 septembre 2023


#### Retour d'expérience – Hydrologue INRAE

#### Les données nécessaires à TNT2



# Retour d'expérienceHydrologue INRAE

#### **AVANT**: comment c'était fait (6 mois mini)

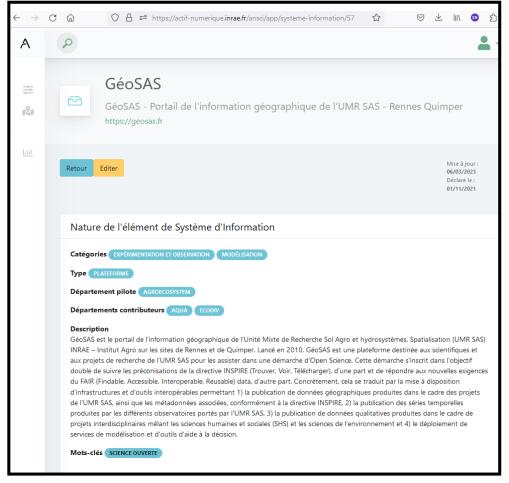


### Retour d'expérience n°2 – Hydrologue INRAE



#### Retour d'expérience n°2 – Hydrologue INRAE

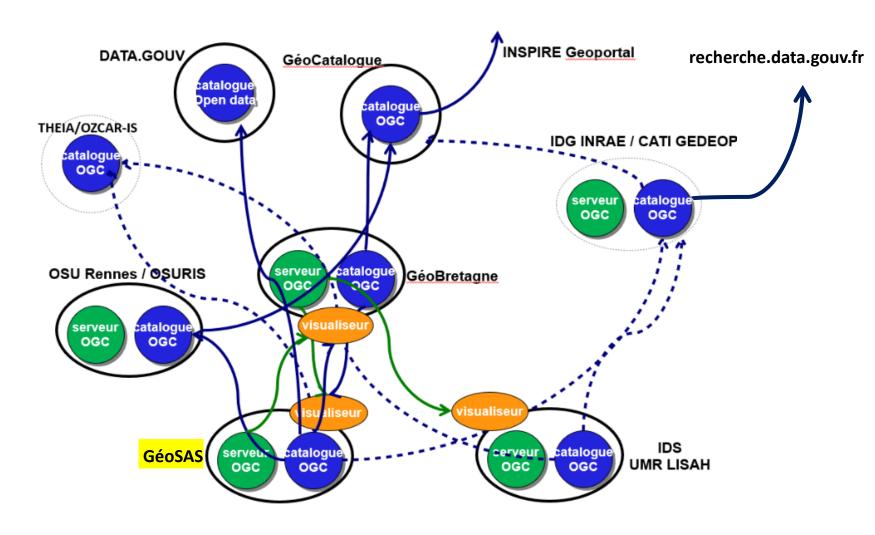
# Bilan, perspectives


- Réalisation rendue possible par:
  - Le système d'information et de services déjà bien mature (Geosas)
  - Le développement des BDD publiques avec accès standardisé
  - Des échanges très réguliers entre thématiciens familiarisés à l'informatique et informaticiens très au fait des thématiques abordées.
  - Une touche ergonomique finale par une prestation extérieure
- Une limitation majeure
  - Couverture géographique limitée à la Bretagne (disponibilité de certaines données, Géobretagne...)...mais principe assez facilement transposable en fonction des données disponibles
- Perspectives
  - Ouverture du service
  - Mise à disposition et visualisation des résultats de simulation
  - Mise en ligne du modèle?



#### Accords institutionnels




Actif numérique, kézako?



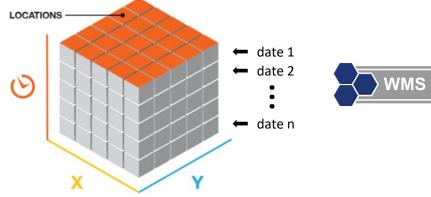




#### Ecosystème & moissonnage

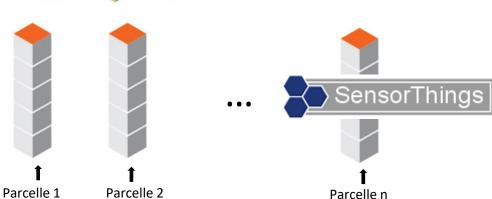







# **Perpectives**

Les Infrastructures de données géographiques et temporelles IDG&T or S&TDI

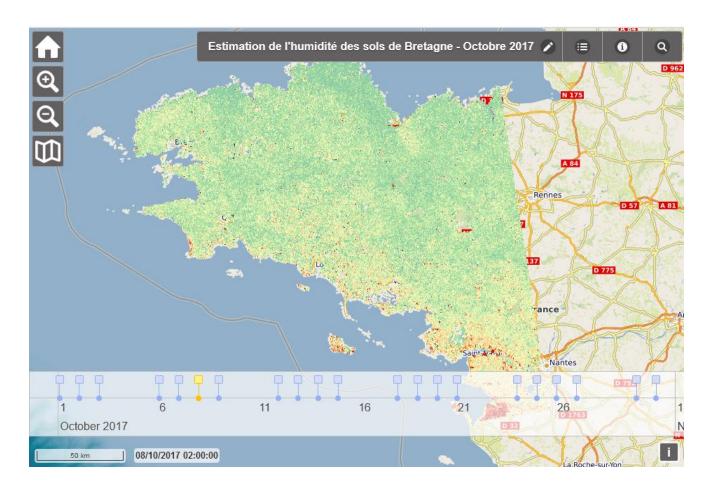

 capables de publier des données spatio-temporelles selon (à minima) 2 types de représentations :

> via une série temporelle d'images géoréférencées



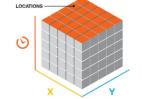


via un série temporelle associée à chaque objet géographique



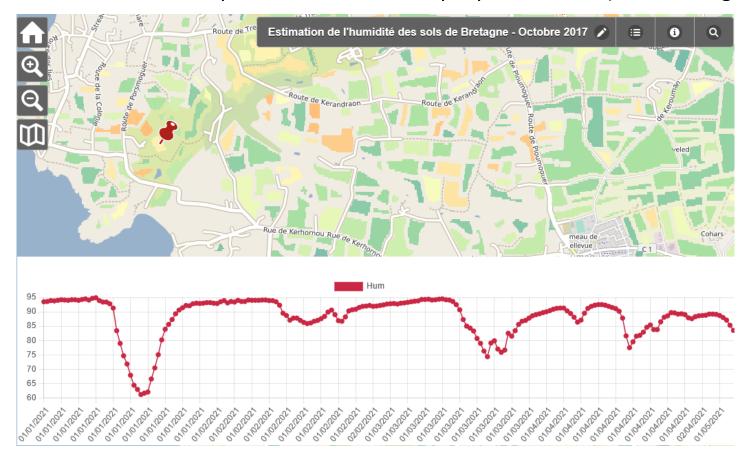






# > Perspectives : l'exemple du projet BOSCO

Publication d' une série temporelle d'images géoréférencées (Geoserver OGC WMS/WCS)










# > Perspectives : l'exemple du projet BOSCO

Publication d'une série temporelle associée à chaque parcelle RPG (SensorThings API)







### **>** Biblio

- Sylvain Grellet, Mario Adam, Véronique Chaffard, Charly Coussot, Hervé Squividant. Playing "OGC SensorThings API Part
  1: Sensing "with several French research organizations and one research infrastructure. First OZCAR TERENO
  International Conference, Oct 2021, Strasbourg, France.
- Hervé Squividant, Florence Revelin (2021), « S'hybrider sous le 4e paradigme de la "science dirigée par les données massives": l'ouverture des données favorise-t-elle l'interdisciplinarité et la transdisciplinarité? », Communication, technologies et développement [En ligne], 9 | 2021, mis en ligne le 23 mars 2021. URL: journals.openedition.org/ctd/3791
- Donatien Dallery, Hervé Squividant, Alban de Lavenne, Josette Launay & Christophe Cudennec (2020) An end-user-friendly hydrological Web Service for hydrograph prediction in ungauged basins, Hydrological Sciences Journal, DOI: 10.1080/02626667.2020.1797045, 2020.
- Isabelle Braud, et Al. (2020) *Building the information system of the French Critical Zone Observatories network: Theia/OZCAR-IS*, Hydrological Sciences Journal, DOI: 10.1080/02626667.2020.1764568, 2020.
- Geneviève Le Hénaff, Hervé Squividant, Ophélie Fovet, Mikaël Faucheux, Yannick Hamon, Nicolas Gillet, Arnaud Dubreuil, Laurent Ruiz « De la mesure environnementale à sa diffusion : mise en place d'une chaîne de traitement modulaire et générique pour les données de l'Observatoire de Recherche en Environnement AgrHyS. n° spécial du Cahier des Techniques de l'INRA consacré aux Données de la recherche à l'INRA, 2018.
- Bera, R., Squividant, H., Le Henaff, G., Pichelin, P., Ruiz, L., Launay, J., Vanhouteghem, J., Aurousseau, P., and Cudennec, C.: GéoSAS: A modular and interoperable Open Source Spatial Data Infrastructure for research, Proc. IAHS, 368, 9–14, <a href="https://doi.org/10.5194/piahs-368-9-2015">https://doi.org/10.5194/piahs-368-9-2015</a>, 2015.
- Squividant, H., Béra, R., Aurousseau, P., and Cudennec, C., 2015. Online watershed boundary delineation: Sharing models through Spatial Data Infrastructures. 2015. PIAHS, 268, 144–149, <a href="https://doi.org/10.5194/piahs-368-144-2015">https://doi.org/10.5194/piahs-368-144-2015</a>, 2015.

