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Abstract: Groundwater has rapidly evolved as a primary source for irrigation in Indian agriculture.
Over-exploitation of the groundwater substantially depletes the natural water table and has negative
impacts on the water resource availability. The overarching goal of the proposed research is to
identify the historical evolution of irrigated cropland for the post-monsoon (rabi) and summer
cropping seasons in the Berambadi watershed (Area = 89 km?) of Kabini River basin, southern India.
Approximately five-year interval irrigated area maps were generated using 30 m spatial resolution
Landsat satellite images for the period from 1990 to 2016. The potential of Support Vector Machine
(SVM) was assessed to discriminate irrigated and non-irrigated croplands. Three indices, Normalized
Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI) and Enhanced
Vegetation Index (EVI), were derived from multi-temporal Landsat satellite images. Spatially
distributed intensive ground observations were collected for training and validation of the SVM
models. The irrigated and non-irrigated croplands were estimated with high classification accuracy
(kappa coefficient greater than 0.9). At the watershed scale, this approach allowed highlighting
the contrasted evolution of multiple-cropping (two successive crops in rabi and summer seasons
that often imply dual irrigation) with a steady increase in the upstream and a recent decrease in
the downstream of the watershed. Moreover, the multiple-cropping was found to be much more
frequent in the valleys. These intensive practices were found to have significant impacts on the
water resources, with a drastic decline in the water table level (more than 50 m). It also impacted
the ecosystem: Groundwater level decline was more pronounced in the valleys and the rivers are no
more fed by the base flow.

Keywords: Landsat satellite images; irrigated cropland; groundwater irrigation; optical indices;
support vector machine
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1. Introduction

The development of groundwater irrigation in the past few decades has helped in securing crop
yield in many semi-arid parts of the world, especially in India [1]. This development has led to the
over-exploitation and increasing depletion of the groundwater resources both in quantity [2] and
quality [3,4]. Remote sensing data for retrieving area under irrigation and its historical evolution are
extremely useful for water management. However, use of optical satellite data in the case of Indian
agriculture is challenging as (i) it is dominated by small farm holdings (average farm less than 1 ha),
(ii) tropical regions with high cloud cover led to less availability of high-resolution satellite images
with high temporal revisit during various cropping seasons, (iii) it has a large diversity of crops and
agricultural practices that are difficult to capture by existing indices [5,6] and (iv) many of these crops
have a short cycle of 3 to 4 months. Exploring new combinations of various optical indices with
classification algorithms are promising way to improve the accuracy of irrigated cropland estimation.

Census-based statistical approach and remote sensing-based approaches are currently used to
produce irrigated land statistics at National or regional scale, but results vary according to the data and
methods used [7,8]. Broadly, these statistics reveal that groundwater irrigation in India has increased
from 20 million ha to 60 million ha respectively from 1950 to 2000 and the net irrigated area has been
increased from 22 million ha to 75 million ha for the same period [9]. Uses of electricity and diesel
for the groundwater pumping accounts approximately 16-25 million metric ton of carbon emissions,
which is around 4-6% of India’s total carbon emission [1]. Due to this uncontrolled groundwater
pumping, groundwater levels are declining and getting disconnected from the surface, leading to the
drying up of rivers observed in many places especially in the Deccan Plateau [10-12].

However, monitoring of cropping pattern using satellite data is still a big challenge at the scale at
which water resources have to be managed. i.e., village or small watershed level. Firstly, farm plots are
very small. About 94% farmers in India are having a land holding of smaller or equal to 1 ha, which is
continuously decreasing [13,14]. Monitoring these small-sized irrigated croplands is highly required
to access irrigation water use [15,16]. Second, large temporal variations in plot size and practices
are observed. Declining water table directly impacts on crop yield and land use practices [7,17-19].
Farmers develop various strategies to adapt to depleting water resource: either reducing the number
of crop cycles in the same plot or reducing the irrigated area in the farm and use rainfed crops in the
remaining part or even leave part of it as fallow land [18]. Farmers are discouraged from growing
more water consuming crops (e.g., rice, sugarcane, and banana) in arid and semi-arid zones due to
environmental implications. Farmers can adopt the rainfed and seasonal crops (e.g., wheat, maize,
sorghum, sunflower, and beetroot) which consume reasonably less water. Finally, under water scarce
situations, farmers often abandon long duration crops (e.g., sugar cane, banana, turmeric) and grow
short duration (3 to 4 months) cash crops with multiple cropping [13]. All these factors increase the
difficulty in assessing irrigated areas in the farming system.

Satellite image derived indices are commonly used for irrigated and non-irrigated cropland area
identification. They are usually based on the detection of spatial differences in the presence of water
and/or vegetation cover [20-22]. Normalized Differential Moisture Index (NDMI) (also known as
land surface water index (LSWI)or normalized difference water index (NDWI)) is sensitive to surface
soil moisture [20,21,23]. Liquid water has strong light absorption in the shortwave infrared (SWIR)
band, which makes NDMI highly sensitive to the total vegetation water content [24]. It is widely
used for irrigated cropland classification [25,26]. It uses near-infrared (NIR, A = 0.851-0.879 um)
and SWIR (A = 1.566-1.651 um) bands of Electro-Magnetic (EM) spectrum. For vegetation, the most
widely used is NDVI (Normalized Differential Vegetation Index) which is sensitive to chlorophyll
content [27]. Normalized Differential Vegetation Index (NDVI) was generally used to identify the
irrigated cropland and LULC (land use and land cover) classification at various scales using various
spatial resolution satellite images [22,28-30]. Enhanced Vegetation Index (EVI) is similar to NDVI
but has soil reflectance correction and canopy reflectance adjustment properties [31]. EVI is highly
susceptible to the vegetation and sometimes better than NDVI [32]. The time series of NDVI and
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EVI are commonly used to represent seasonal rhythms and phenological variations for different land
use types [20]. The difficulty is that even in rainfed areas, spatial variations of moisture occur due to
spatial heterogeneity of rainfall and soil properties. Similarly, in areas where a diversity of crops is
present, spatial variations of vegetation cover might be due to timings of crop rotations, the difference
in rooting depth for different species or presence of trees. For this reason, the use of a single index for
detecting irrigation is increasingly questioned [32,33] for the case of humid regions. A multiple indices
(vegetation, surface moisture, and surface temperature)-based approach is preferable for the irrigated
and non-irrigated cropland classification [34,35].

Moderate Resolution Imaging Spectroradiometer’s (MODIS), Terra mission and Landsat satellite
products are well known for land use and land cover studies [6,36-39]. However, the available high
temporal frequency satellite products (MODIS) are of coarse (250 m or more) to medium (Landsat
(30 m)) spatial resolution. In a country like India where small (less than 1 ha) agricultural fields are
dominant, Very High Spatial Resolution (VHSR) remotely sensed images are required to identify the
irrigated crops [5,7,18]. At the same time, extensive ground data is required for the calibration and
validation of classification outputs. It is evident from the literature that several studies focused on
identifying irrigated cropland areas [7,22,37,40]. For precise irrigated classification outputs either time
series [37,41] for the complete cropping duration or in case of non-availability of time series satellite
images, a single satellite image during the peak of cropping season [40,42] is required. A robust
methodology capable of quantifying irrigated cropland with high accuracy at field scale from the
satellite images remains a challenge.

Support vector machines (SVM) classifier is a supervised non-parametric statistical learning
mechanism. It was developed in the late 1970s, but SVM became more famous for remotely sensed
image processing in last decade due to algorithm’s flexibility and higher classification accuracy
outputs [37,43,44]. Support vector machine is a set of supervised learning methods widely used
for the classification, regression and outlier detection [45,46]. Support vector machine was formerly
known as binary classifiers with an algorithm adapted to reduce the multiclass problems [47]. It is
well known for the optimal separating hyperplane between various classes with the help of training
cases. The training samples falling within the boundaries are the most critical for discrimination, SVM
accurately illustrate these samples and prioritize them from the other classifiers. With comparison to
other classifiers like neural networks, decision tree, and discriminant analysis, SVM performs better in
the case of small training sets too [47,48]. The samples lie at the edge of the class distribution in feature
space, SVM uses them as training samples, while maximizing the likelihood classifier uses class means
and covariance of training samples as an input [37,47]. It fits for the remote sensing applications to
perform precise land use and crop classifications [49].

The objectives of this study were to assess the potential of optical indices derived from available
cloud free multitemporal Landsat images for estimating the historical evolution of irrigated cropland
area and to evaluate the impacts of this evolution on groundwater depletion in a semi-arid region
of Southern India. For calibration, we used a large ground surveyed dataset of the Berambadi
experimental watershed. The ground observations of irrigated and non-irrigated farm plots were done
by surveying farmers’ fields from 1990 to 2016. It was noticed that the irrigated cropland classification
requires time-series of vegetation indices [37,44,50]. Moreover, it has been shown that classification
accuracy is higher when using multiple vegetation indices vs. single vegetation index in case of
using one single date image [51]. One index was not able to consistently classify irrigated area using
a single image, while in a combination of multiple indices high and consistent accuracy was observed.
While applying this method to a watershed in India, we characterized the spatial heterogeneity in
the dynamics of irrigation development across the watershed, and it links with the groundwater
resource depletion.
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2. Material and Methods

2.1. Study Area

The Berambadi watershed (89 km?) is located in the Gundlupet taluk, Chamrajanagara district
of Karnataka in South India and belongs to the Kabini River basin which is a major tributary of the
Cauvery River (Figure 1). The Kabini Critical Zone Observatory [52] has been monitored since 2002 by
the Indo-French Cell for Water Science The Berambadi watershed has been developed as a calibration
(CAL) and validation (VAL) site for various satellite mission like Radarsat2 [53], Soil Moisture
and Ocean Salinity (SMOS) [53,54] and RISAT-1 under the project Assimilation of Multi-satellite
at a Berambadi watershed for Hydrology And land Surface experiments(AMBHAS).
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Figure 1. Location and soil texture map of the study area.

The soil type in the Berambadi watershed is categorized in seven major soils (Figure 1) at 1:50,000
scale by National Bureau of Soil Survey and Land Use Planning (NBSSLUP) [53]. Major LULC of
the watershed is agriculture (approx. 52%), reserved forest (approx. 32%) and other minor classes
include settlement, water bodies, wasteland, and road networks (Figure 2). A survey carried out in
2013 showed that the average farm size is 1.2 ha, 60% of the farmers have access to irrigation in at
least a portion of their land, and selling or lending water between farmers is anecdotal [55]. Irrigation
techniques cause soil salinization in croplands close to the watercourses [56]. Bedrock is granitic gneiss,
and the aquifer is composed of a regolith layer of 15 m on average underlain by fissured and fractured
rock layers [57]. This aquifer has a low transmissivity and typically one tube well cover less than 1 ha
cropland for the irrigation [51]. Nevertheless, groundwater is virtually the only source of drinking
water and irrigation. The number of tube wells has increased steadily during the last 15 years (minor
irrigation census data from the ministry of water resources [30,58]).
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Figure 2. Calibration and validation parcels and the transect AA” from upstream to downstream. The X,
Y, and Z belong to three regions which represent respectively upper, middle and downstream sections
of the watershed.

Climate is tropical sub-humid with an annual rainfall of 800 mm and annual potential
evapotranspiration of 1100 mm. The rainfall displays a strong inter-annual variability with decadal
trends [19]. It is dominated by a monsoon regime, with the orographic effect of the Western Ghats
generating a steep precipitation gradient along the West-East axis [59]. Based on the traditional
cropping practices the main cropping seasons (Table 1) are predominantly divided into three sections:
Southwest monsoon or Kharif season (mid May to mid September) followed by Northeast monsoon or
Rabi season (mid September to mid January) and the dry season or Summer season from mid January
to mid May. Commonly farmers are following these cropping seasons for the cultivation with a time
lag of one month, due to local weather condition or farmers strategy (i.e., economy, groundwater
availability, and other personal planning). According to the Indian Meteorological Department (IMD)
seasons in India are divided into four sections: winter season (January and February), pre-monsoon
season (March to May), southwest monsoon season (June to September) and post-monsoon season
(October to December).

Table 1. Crop calendar of the experimental watershed.

Summer Season Kharif Season Rabi Season

Mid-Jan to Mid-May  Mid-May to Mid-Sept = Mid-Sept to Mid-Jan

Maize Maize
Country beans Country beans
Non-irrigated crops Sunflower Chickpea
Marigold Groundnut
Sorghum
Finger millet
Onion Onion Tomato
Watermelon Chilli Solar beans
Beetroot Beetroot Garlic
. Cabbage Cabbage
Irrigated crops Tomato Beetroot

Turmeric (8 to 9 months)

Sugarcane (12 months)

Banana (12 months)
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During Kharif season, most of the agricultural area is cultivated, and a large diversity of crops are
found, either rainfed or irrigated [60]. During Rabi season, the area under cultivation decreases with
respect to the Kharif season and majority of crops are irrigated. Summer season cultivation is possible
only with groundwater irrigation.

With the availability of groundwater irrigation, farmers usually tend to switch from traditional
rainfed crops to water-intensive crops. As electricity for pumping is virtually free for farmers [11], crop
choice depends mostly on groundwater availability and capacity to invest in inputs (seeds, fertilizers,
pesticides, and labor). Irrigated crops with long crop cycles (e.g., turmeric, sugarcane, banana) are
preferred when groundwater resource is abundant. The short cycle crops (e.g., onion, garlic, beetroot,
cabbage) are used when the long-term availability of groundwater is not granted. In the valley region
of the watershed, the majority of farmers switched from traditional rainfed crops to irrigated croplands.
In some parts of the up-streams (upland areas), groundwater is used as a supplement during monsoon
season for all crops.

Rabi cropping season is also known as post monsoon or second season. Rabi season is supported
with groundwater irrigation resources. In the case of the poor Northeast monsoon, the majority of
farmers are fully dependent on groundwater resources. Maize, horse-gram groundnut, and gram
are the major rainfed crops in this season and beans, garlic, beetroot, sugarcane, and banana major
irrigated crops (Table 1). However, maize can be found with or without irrigation in the watershed.
In the case of non-sufficient precipitation, farmers are entirely dependent on the groundwater to
cultivate their farmlands, as there is no other source of irrigation like a canal. The majority of farmers
with borewell facility are priorities this season as the groundwater level arises after monsoon rainfall.
Banana and Sugarcane are having a life cycle of 12 to 14 months, and both crops are initiating in the
rabi season with 100% irrigation requirement. After monsoon season usually groundwater level rises
and accordingly farmers plan for the irrigation in rabi (post-monsoon) season. In regions with low
groundwater yield, farmers plan for non-irrigated crop or short duration cash crops, such as garlic or
vegetable. However, with good groundwater yield farmers generally cultivates banana or sugarcane.

During summer season farmers are wholly dependent only on groundwater resources, as there is
no other alternate source of irrigation in the watershed as the probability of rainfall occurrence is very
low during the summer season. Farmers with sufficient groundwater yield are only cultivating crops
in this season and all croplands in this season refer to 100% irrigated cropland. In summer season
apart from extended rabi crops (like banana and sugarcane), farmers prefer to grow vegetables (like
cabbage, beetroot, onion, tomato) and fruit (like watermelon) (Table 1). Crops cultivating in this season
having high water demand.

2.2. Dataset Used in the Study

The irrigation history is developed using multi-temporal Landsat satellite images from the year
1990 to 2016. The study is focused on the post-monsoon (rabi) and summer (zaid) season, as the
monsoon (kharif) season is mostly cloudy. The Shuttle Radar Topography Mission (SRTM) product
1 arc-second (30 m spatial resolution) Digital Elevation Model (DEM) was used for drainage and
watershed delineation. Google Earth image, IRS (Indian Remote Sensing) LISS-IV (Linear Imaging Self
scanning Sensor) and SPOT-6 (Satellite Pour 1'Observation de la Terre) images were used for cropland
parcel delineation.

2.2.1. Landsat Data

Multi-temporal Surface Reflectance (SR)-based products from Landsat (30 m spatial resolution)
were used for irrigated vs. non-irrigated croplands classification. Twelve available cloud-free images
(with approximately 5 year interval) were downloaded from the United States Geological Survey
(USGS) website, includes ten Landsat 5 Thematic Mapper (TM) images and two Landsat 8 Optical
Land Imager (OLI) images (Table 2). These twelve images span six agricultural years, with six rabi
seasons and the following six summer seasons. Dates are towards the end of the respective seasons,
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corresponding to the stage of crop maturity. India being a tropical country cloud-free satellite images
are rarely available during the Kharif cropping season. Therefore, while non-availability of images
is the main limitation for using optical satellite images in monsoon regime contexts [18], the present
study is restricted to the rabi and summer cropping seasons.

Table 2. List of the dataset used with Day Of Year (DOY), season and sensor specifications
(Thematic Mapper (TM), and Optical Land Imager (OLI)). One image is considered per year for
each cropping season.

Year Rabi Season Summer Season
Date (DOY (Sensor))
1990-1991 26-12-1990 (360 (TM)) 28-02-1991 (059 (TM))
1994-1995 05-12-1994 (339 (TM)) 12-04-1995 (102 (TM))
2000-2001 21-12-2000 (356 (TM)) 11-03-2001 (070 (TM))
2004-2006 16-12-2004 (351 (TM)) 09-04-2006 (100 (TM))
2008-2009 27-12-2008 (362 (TM)) 01-03-2009 (060 (TM))
2015-2016 31-12-2015 (365 (OLI)) 20-12-2016 (080 (OLI))

2.2.2. Agricultural Parcel Delineation

Accurate parcel delineation is essential to perform relevant classification with remotely sensed
data, although it is challenging [61]. In the study area, this was challenging as available cadastral maps
were established in the early XX century, and since then cadastral boundaries have often been divided
into smaller fields belonging to different farmers. Currently, farmer’s landholding is about 1 ha on
average [13]. Generally, farmers like to diversify land uses in order to reduce the risk of crop failure;
they often divide larger fields into small-size parcels even when the same crop is cultivated in all of
them, to allow a diversity of cultural practices. In fact, there is the tendency of farmers to merge or
divide parcel across seasons or years. For classification, performing the analysis using the smallest
parcel size minimizes the risk considering heterogeneous units. Hence we first delineated all individual
parcels that could be identified using the 2 m spatial resolution google earth image of the year 2012,
which was the best available resolution. Then all parcels were re-examined using successively 2013,
2014 and 2015 LISS IV (5 m spatial resolution) and 2016 SPOT-6 (1.5 m spatial resolution) satellite
images and when a parcel division was identified, corresponding plots were delineated.

2.2.3. Ground Observation

The ground observation was divided into two parts: manual groundwater level data collection in
various cropping seasons and irrigated /non-irrigated cropland survey with farmers.

The intensive irrigated and non-irrigated cropland ground observation survey was conducted
with the help of local farmers (Figure 2). The complete survey was done with individual interviews of
around 80 to 120 farmers. Extensive field visit was undertaken to cover all land parcels in collecting
the irrigation history in the watershed. To maintain the survey accuracy, the information collected was
cross-checked with the adjacent farmers. The questions include: “When was the borewell installed
and/or re-installed?”, “How deep is the borewell?”, “What are the pump specifications?”, “Which crop
were growing during the study period?”, “What is the groundwater yield?”, What are the borewell
re-drilling and service history?”, “How much cropland area is cultivated using borewells?”, “Are they
happy with groundwater yield?”, “Did they switch from traditional crops to other crop types?” etc.
While doing ground survey with farmers help, we noticed that in 90’s the plot size was bigger than
present in present (year 2016). Farmers divided the irrigated cropland according to their financial
resources and groundwater availability. As shown in Table 3, around 2500 parcels were used as
samples for supervised classification using SVM algorithm. For the calibration of SVM model, 50%
random and spatially distributed parcels were selected and remaining 50% random parcels were used
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for validation [62,63]. Care was taken to perform precise ground surveys and farmer interviews to
obtain precise information on cropping and water management practices.

Table 3. Training and validation samples of irrigated and non-irrigated cropland in the Berambadi watershed.

Year Irrigated Non-Irrigated Total
2015-2016 76 204 280
2008-2009 72 380 452
2004-2006 69 412 481
2000-2001 77 374 451
1994-1995 85 352 437
1990-1991 48 342 390

2.2.4. Groundwater Level Monitoring

The groundwater level and borewell yield in the Berambadi watershed are monitored by spatially
distributed 205 operational piezometers (Figure 2). Most of these piezometers belong to the farmers,
who are using them for the irrigation purposes. Monthly groundwater level monitoring is realized
since May 2010 during non-pumping hours. The transect AA” is drawn to retrieve the groundwater
level from upstream to downstream of the watershed. Inverse Distance Weighting interpolation was
done at the watershed scale using distributed piezometers for three cropping seasons. Along the
transect AA’ the interpolated groundwater level was extracted for various cropping seasons with
100 m interval.

2.3. Image Pre-Processing for Irrigated and Non-Irrigated Cropland Classification

Landsat Multitemporal Images Calibration and Indices Estimation

All pre-processed (geo-referencing, atmospheric correction, optical indices estimation) Landsat
images and indices (NDVI, NDMI and EVI) were downloaded from ESPA (Earth Resources Observation
and Science (EROS) center Science Processing Architecture) project of USGS [64]. The atmospheric
correction was performed using the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) algorithm [64]. The surface reflectance and atmospheric correction were performed using
Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer model [64,65].
LEDAPS is a highly standardized and stable automatic surface reflectance modeler, which can ensure
comparability of reflectance from sensors of Landsat satellites [21,51,64,66]. Due to the cloud cover
and sensor malfunctioning, the temporal resolution cannot maintain the same [21]. The pre-processed
NDVI, NDMI and EVI optical indices were estimated using equations mentioned in Table 4 [64].
All optical indices were resampled using nearest neighbor (NN) resampling method to the pixel size
5 m spatial resolution for a better precise mean and standard deviation at agriculture plot scale [33].

Table 4. Indices used were: Normalized Difference Vegetation Index (NDVI), Normalized Difference
Moisture Index (NDMI) and Enhanced Vegetation Index (EVI). Where G = 2.5 (the gain factor), ¢ is the
atmospherically corrected value for near-infrared (NIR), Red and Blue bands, C1 and C2 are coefficients
with constant values 6.0 and 7.5 respectively, and L is the soil adjustment factor, and its value is 1.0 [67].

Indices Name Equation
_ oNIR—gRed
NDVI NDVI = ONIRFgRed
EVI EVI=G gNIR GRed

oNIR+ Cl(%id)fs%gﬁBlue)Jr L
— @NIR—¢
NDMI NDMI = ONIRT 0SWIR
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2.4. Data Processing

The overview of the comprehensive methodology to classify multi-temporal irrigated and
non-irrigated cropland area is presented in Figure 3.

Landsat Images Very high spatial Ground
(1990-2015]) resolutionimage Observation Shuttle Radar
Topography
L J, Mission [SRTM)
Pre-processing Plots digitization Digital Elevation
T Model (DEM])
NDVI, NDMI and i
EVI estimation
Soil and Water
\ﬁ Assessment Tool
Support Vector Machine . . SWAT) model
(SVM) Classification Training Samples ( 1
I
AND operation between . Watershed and
classified indices Validation Samples drainage network
delineation
Summer Rabi
irrigated/non | irrigated/non Classification Accuracy
-irrigated -irrigated Validation — and Kappa coefficient
cropland cropland Accessment
classification | classification

Figure 3. Workflow of the methodology.

The parcel scale median value [53] and standard deviation (SD) were estimated for the various
indices (NDVI, NDMI, and EVI). Parcel mean values were estimated for all 36 optical indices
(3 indices x 12 multi-temporal products).

2.4.1. Support Vector Machine Classification

The Support vector machine classification was performed using the scikit-learn library [45].
Support vector machine classification was done individually for the various optical indices (NDVI,
NDMI, and EVI) using 50% random spatially distributed intensive ground observed training samples.
Remaining 50% random samples were used for the classification validation. The comprehensive
methodology leads to identify irrigated and non-irrigated croplands.

2.4.2. Irrigated Cropland Mapping

To remove the classification overshoot, it was noticed that the indices together could perform
better than the individual one. Therefore, the decision rule in the form of AND boolean operator was
implemented on SVM classified outputs of these indices, and we have found that it removed overshoot
error of irrigated cropland outputs.

After generation of all irrigated cropland maps, the kappa coefficient was estimated. Kappa
index is considered to be a better index for determining classification accuracy from the confusion
matrices [34,68]. The primary results of irrigated and non-irrigated croplands were generated,
and the kappa coefficient was calculated for all classified outputs. These individually classified
outputs were further used to estimate irrigation history and to identify the evolution of dual season
irrigated cropland (post-monsoon and summer cropping seasons) in the watershed. The validation
of classified cropland parcels was done with randomly selected 50% (around 1250 plots) of ground
observed datasets.
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2.4.3. Irrigation Intensity Mapping

After assigning 1 and 0 to respectively irrigated and non-irrigated croplands, the multitemporal
values obtained for each plot were summed to produce the irrigation intensity maps. The irrigation
intensity maps were generated for the post-monsoon and summer cropping season by adding
multitemporal images of concern seasons. The cumulative irrigation intensity map for the year
1990 to 2016 was generated by adding all 12 images, including both cropping seasons. This process
gives a synoptic view of the spatial distribution of irrigated cropland intensity in the watershed.

3. Results and Discussion

The first subsection explains about plot (parcels) delineation procedure and plot size variation
in the watershed. The second subsection shows inter-comparison of results obtained from different
indices for rabi and summer seasons. The third subsection is about spatiotemporal irrigated cropland
evolution in the berambadi watershed. The impact of intensive irrigation on groundwater is discussed
in the fourth subsection.

3.1. Plot Delineation

Approximately 19,600 parcels were digitalized in the Berambadi watershed out of which 18,500
parcels were identified as agricultural land. Except for very few parcels of more than 2 ha, which were
identified as plantations, the other parcels were extremely small, with a mean of 0.2 ha (Figure 4).
Classifying satellite images, in this case, is challenging to analyze the progression of groundwater
irrigation over time.
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Figure 4. Distribution of agricultural parcel size in the Berambadi watershed.

3.2. Irrigated and Non-Irrigated Cropland Classifications

The kappa accuracy (%) of irrigated and non-irrigated cropland classification using NDVI, NDMI,
and EVI, individually and together multitemporal images (36 images (12 dates x 3 indices)) of rabi
and summer cropping seasons is shown in Figure 5.
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Figure 5. Accuracy assessment of SVM classified irrigated and non-irrigated croplands.

The classification was performed with SVM algorithm using EVI, NDMI, and NDVI indices.
First, SVM algorithm was applied separately to each date and then to the rabi season dates and the
summer season dates considered as two different datasets, and finally to all dates considered together
as one dataset. It was evident in Figure 5 that, individually all three indices (EVI, NDVI, and NDMI)
were given poor classification outputs when compared the same with combined indices. For the year
1990-1991, the classification results of each of the NDVI and NDMI were poor than EVI, even though
combined indices performed further better than EVI. From 1994 to 2016 all indices improved the
irrigated cropland classification performance with an error of 15 to 20%. However, indices performed
higher classification accuracy together than the individual. Besides, these results confirm that SVM
performs very well for the classification of irrigated cropland [37,46].

3.3. Irrigated and Non-Irrigated Cropland Analysis during Rabi Season (Post-Monsoon)

3.3.1. Irrigated and Non-Irrigated Cropland Evolution

The spatial distribution of irrigated and non-irrigated (or fallow land) cropland areas for the
rabi cropping season depicted in Figure 6 with the approximately five-year interval from the year
1990 to 2015. It was noticed that in the 1990s few farmers (approximately 5%) with irrigation facility
was cultivating in rabi season. In 1994, about 16% irrigated cropland clustering was identified in the
downstream of the watershed. The results show that the farmers were interested to grow irrigation
crops in rabi season. As shown in Table 5, during the year 2015 rabi season irrigated cropland has
reached 31%, compared to 21% in the year 2008, which requires a huge quantity of groundwater for
the crop irrigation. The rabi season irrigated area in the up and middle stream regions has increased
27% and 6%, respectively during 2008 to 2015 (Table 5). However, in the downstream, the irrigated
area has been reduced by 2.5% for the same period. These figures indicate farmers’ interest for rabi
season irrigation in the upstream region.



Remote Sens. 2018, 10, 893 12 of 23

Table 5. Rabi season irrigated cropland evolution from 1990 to 2015.

Irrigated Cropland Area (%) with Respect to the Total

Total Number Total Area Acgricultural Cropland

Year of Parcels (ha) & P

Upstream (X) Middle Stream (Y) Downstream (Z) Total
1990 812 201.4 3.45 5.92 4.16 4.57
1994 2431 684.24 16.18 16.00 14.36 15.54
2000 3123 859.73 17.78 22.47 18.14 19.52
2004 2346 649.29 14.59 14.48 15.19 14.74
2008 3584 936.31 24.39 18.46 21.19 21.26
2015 4934 1380.36 51.13 24.15 18.81 31.34

26 December 1990 05 December 1994

21 December 2000 i 16 December 2004

27 December 2008 : 31 December 2015

Drainage Network :l Urban Area/ Settlement
Land Use and Land Cover - Waste Land/ Scrub Land

E Parcel Boundary
Water Body
- Reserve Forest -

- Road Network - Irrigated Cropland

|:| Non-Irrigated or Fallow Land

Figure 6. A temporal map of irrigated and non-irrigated croplands in Rabi season from 1990 to 2015.

3.3.2. Irrigated and Non-Irrigated Cropland Spatial Evolution

The total irrigated cropland area was divided into the three zones upstream, middle stream and
in downstream. The temporal variation of irrigated cropland was analyzed for the rabi season in these
zones (regions). The regional irrigated cropland statistics gave an idea about their shifting towards
upstream. The irrigated cropland in the upstream has significantly increased during last decade
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(Figure 7). However, due to tremendous depletion of groundwater in the downstream, the total rabi
season irrigated cropland area of downstream got stabilized.

60 - O Upstream @ Middlestream @ Downstream
50 - ]
40 -

30 -

20 -

Ratio of Total irrigated cropland (%)

, | i

1990 1994 2000 2004 2008 2015

T T T T T

Year

Figure 7. Rabi irrigated cropland evolution in the watershed.

3.3.3. Irrigated and Non-Irrigated Cropland Intensity

The combined spatiotemporal map of the irrigated area was generated to distinguish the spatial
distribution of high and less intensity irrigation practices. The light red to dark red color in the
map shows the temporal intensity of irrigation (Figure 8). The irrigated croplands are clustered
to the drainages and shifting towards upstream of the watershed. Shallow groundwater level in
the upstream is attracting farmers to adapt irrigation practices during multiple cropping seasons.
The irrigation intensity map (Figure 8) shows that new rabi irrigating cropland are emerging in the
upstream. This tendency of farmers to adopt irrigation led them to pump an enormous amount
of groundwater to fulfill the crop water requirement. This intensive irrigation activity can further
deplete upstream groundwater, which can disconnect the baseflow and can disturb adjacent reserve
forest ecology.

Legend

Drainage Network

Land Use and Land Cover
:| Parcel Boundary

- Reserve Forest

I Road Network

[ urban Area/ Settiement
[ Waste Land/ Scrub Land

Il \Water Body
Non-Irrigated Cropland
0 15 3 Irrigation Intensity
KM e Hon

Low

Figure 8. Spatiotemporal map of Rabi irrigated cropland for the duration 1990 to 2015.
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3.4. Irrigated and Non-Irrigated Cropland Analysis during the Summer Season

3.4.1. Irrigated and Non-Irrigated Cropland Evolution

Historical evolution of irrigated and non-irrigated cropland maps for summer cropping season
(Figure 9) is also providing insightful information on spatial distribution and evolution of irrigation
in the watershed. The detailed maps confirmed the observation that irrigation was preferentially
developed along the valleys. Due to the insufficiency of high-resolution satellite images, a good
number of studies used coarse resolution satellite images for the cropland classification with high
definition gaps in rainfed and irrigated croplands [39].

28 February 1991 12 April 1995

11 March 2001 09 April 2006

01 March 2009 20 March 2016

Drainage Network I:I Urban Area/ Settlement
Land Use and Land Cover - Waste Land/ Scrub Land

|:| Parcel Boundary
Water Body
- Reserve Forest -

- Road Network - Irrigated Cropland

|:| Non-Irrigated or Fallow Land

Figure 9. Temporal map of irrigated croplands in Summer season from 1991 to 2016.

In 1991, few farmers with irrigation facility were growing summer crops. These farmlands existed
for the most part near the outlet of the watershed. Slowly with time summer irrigated croplands
moved towards upstream (Figure 9), but they were clustered around mainstream of the watershed.
Summer irrigated cropland expansion in the watershed was noticed from 1991 to 2016 (Figure 10).
Due to intensive irrigation impact on groundwater farmers started quitting taking the risk of crop
failure in the case of poor borewell yield [52]. In 2016 most of the downstream farmers stopped summer
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irrigation, as groundwater depleted drastically. It is evident in Figure 9 that at present mostly summer
irrigated cropland clusters exist in the upstream area of the watershed along the drainage. The total
summer season irrigated area was increased threefold from 1991 to 1994, and after that, it got stabilize
till 2009, and then it reduced to 2.5% in 2016 (Table 6).

Table 6. Summer season irrigated cropland evolution from 1991 to 2016.

Irrigated Cropland Area (%) with Respect to the Total

Total Number Total Area Agricultural Cropland
Year 8 p
of Parcels (ha) -

Upstream (X) Middle Stream (Y) Downstream (Z) Total
1991 816 210.55 2.74 476 6.92 4.78
1995 2406 694 19.82 13.31 14.52 15.76
2001 2560 684.4 14.24 16.39 16.06 15.54
2006 2837 789.64 21.69 16.66 15.65 17.93
2009 2805 723.79 16.79 15.48 17.23 16.43
2016 2170 616.24 19.06 13.60 9.28 13.99

3.4.2. Irrigated and Non-Irrigated Cropland Spatial Evolution

Summer cropping is entirely dependent on the irrigation, and in the Berambadi watershed, there
is no alternate source for the farmers except groundwater irrigation. Irrigated area has increased
tremendously during 1991-1995 (Figure 10). From 1995 the upstream part of the watershed was leading
in total irrigated cropland area as compared to downstream (Figure 10). Due to intensive groundwater
and a huge number of borewells in the downstream, the farmers belong to the downstream region of
watershed started quitting to grow summer season crops.

25 -
OUpstream @ Middlestream @ Downstream

20 - —

10

Ratio of Total irrigated cropland (%)

1991 1995 2001 2006 2009 2016

Year

Figure 10. Summer irrigated cropland evolution in the watershed.

3.4.3. Irrigated and Non-Irrigated Cropland Intensity

Summer season cropping is wholly dependent on the groundwater resources in the watershed.
In 90's the irrigated cropland was mainly at downstream and slowly it clustered around all three main
tanks of the watershed; however, presently all tanks are dried. The spatiotemporal map was generated
from low intensity (once irrigated) to high intensity (always irrigated) (Figure 11). The non-irrigated
croplands (rainfed croplands) are shown in yellow color. These croplands were not under any irrigation
in summer cropping season during the year 1990-2016. In the absence of rainfall and no surface water
availability during summer cropping season, farmers generally irrigate the crops using groundwater.
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Figure 11. Spatiotemporal map of Summer irrigated area for the duration 1991 to 2016.

3.5. Dual Season (Rabi and Summer) Irrigated and Non-Irrigated Cropland Analysis

3.5.1. Irrigated and Non-Irrigated Cropland Evolution

The total number of parcels of dual irrigated croplands has increased from 1990 to 2009, but during
2015-2016 the dual irrigated parcels have reduced (Table 7). At present farmers like to grow cash
crops like turmeric, sugarcane, banana, onion, garlic, vegetables. All of these cash crops need intensive
irrigation facility. Farmers with sufficient irrigation facility are switching to 2 or 3 irrigated crops per
year. Apart from monsoon season, these farmers are cultivating crops in rabi and summer seasons.
The total area is under dual irrigation, which is about 10% of total agricultural cropland (Table 7).
These farmers have sufficient groundwater yield throughout the year for cultivation. These croplands
are contributing maximum to the water loss in the watershed.

Table 7. Dual irrigated cropland evolution from 1990 to 2016.

Irrigated Cropland Area (%) with Respect to the Total

Total Number Total Area Agricultural Cropland

Year of Parcels (ha) 5 P

Upstream (X) Middle Stream (Y) Downstream (Z) Total
1990-1991 332 98.52 1.28 2.98 2.36 224
1994-1995 1072 356.4 11.34 6.51 6.60 8.09
2000-2001 1219 395.37 10.32 9.20 7.50 8.98
2004-2006 1028 345.26 10.41 6.75 6.50 7.84
2008-2009 1463 429.97 12.22 8.12 9.17 9.76
2015-2016 888 342.04 14.01 6.32 2.98 7.77

3.5.2. Irrigated and Non-Irrigated Cropland Spatial Evolution

The temporal evolution of dual irrigated cropland in upper stream, middle stream and
downstream of the watershed is depicted in Figure 12. During 1994-1995 the dual irrigated cropland
shoot-up in the upstream with an approximate 11% area occupation with respect to total cropland area
of the upstream region. The high probability of groundwater yield in the upstream motivates farmers
for dual season irrigation. As the groundwater of upstream region of the watershed is recharged by the
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adjacent humid reserve forest, this region helps to maintain dual irrigated cropland area from 1994-1995
to 2015-2016 (Figure 12). Middle stream and the downstream regions of the watershed has increased
and stabilized their total irrigated cropland between 1994-1995 and 2008-2009. Intensive irrigation
in the whole watershed depleted the groundwater by more than 50 m in downstream resulting
the dual season irrigation depletion during 2015-2016. Due to over-exploitation of groundwater,
many borewells were dried up and farmers lost their crops in last decade. After understanding the
groundwater depletion pattern and poor borewell yield majority of farmers quit their plan for the
summer crops in the downstream areas.

16 -
OUpstream @O Middlestream @ Downstream

14 - —

12 ]

Ratio of Total irrigated cropland (%)
o]

1990-91 1994-95 2000-01 2004-06 2008-09 2015-16

Year

Figure 12. Dual (Rabi and Summer) irrigated cropland evolution in the watershed.

3.5.3. Irrigated and Non-Irrigated Cropland Intensity

Figure 13 shows the spatial distribution of dual cropping season intensity from 1990 to 2016.
In 90's the berambadi watershed had three major water bodies in downstream near the outlet of the
watershed, one at middle stream and one at upstream (Figure 13). In 2017, the most significant perennial
water body, which exists in the upstream of the watershed, also disappeared. Due to a continuous
increase in irrigated cropland in the upstream, the farmers are exhausting their resources. In 1990s
the groundwater yield in the upstream was better and surface flow also existed in monsoon and
post-monsoon seasons. Economically strong farmers purchased big-sized farmlands (Figure 13) and
started growing high water demanding crops like banana, sugarcane, coconut, turmeric, and vegetables.
However, now these big farmers, as well as farmers in the middle stream and downstream, are dividing
their croplands into smaller parcels for precision management and avoiding crop failure.

Figure 13 represents dual (rabi and summer seasons) irrigation croplands evolution in the
watershed. Other than cultivating in summer and rabi seasons, these farmers are also cultivating in the
kharif season. Intensive cropping of three seasons in a year is leading to extensive utilization of water
resources, and use of various fertilizers is exerting significant negative impacts on the soil quality and
groundwater availability [3]. The major dual irrigated croplands are clustered along the drainages or
valleys of the watershed (Figure 13).
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Figure 13. Spatiotemporal map of Dual (Rabi and Summer) irrigated cropland area for the duration
1990 to 2016.

3.6. Impact of Intensive Irrigation on Groundwater

As per the Census of India 2011, the area under irrigation in the Gundulupet taluk is 27% of the
net sown area with borewell density of 11 borewells/km?. It was observed that the valley portions are
having deeper groundwater levels, while in the topographically higher zones have relatively shallow
groundwater level (Figure 14). This pattern of groundwater base flow is non-classical in hydrogeology.
The Figure 14 also shows that borewell density in the valleys, and now the borewell failure rate is also
increased significantly in the valleys of the watershed.

Farmers in the watershed rather than depending on rainfall they tend to use groundwater
extensively. During last three decades, the most of the farmers switch from rainfed to irrigated
cropping. The number of borewells in the watershed are growing unceasingly from 90’s [52]. A total
of 13 villages exist in the watershed, and we have found the number of borewells is on the rise.
During weak monsoon, farmers keep borewell option open as an alternative [52]. Figure 14 highlights
large change in groundwater levels due to rapid addition of borewells. Downstream groundwater
depleted by 40 to 50 m due to intensive irrigation history and drainages runs dry. Now irrigated
cropland clustered in the valleys and shifted towards upstream of the watershed. This uncontrolled
growth in several borewells can cause further groundwater depletion in the upstream region of the
watershed and will have a severe impact on the adjacent reserve forest groundwater level located in
the upstream area.
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Figure 14. Groundwater level (GWL) along transect AA’ for the Kharif, Rabi and Summer season and
the total number of borewells in villages of the experimental watershed.

To understand the seasonal spatial variability of groundwater level in the watershed, we have
interpolated the observed groundwater level dataset at watershed scale [3]. The transect AA” shown in
Figure 2 used to extract the groundwater levels with 100 m intervals for all three cropping seasons
(kharif, rabi, and summer). The extracted interpolated groundwater level was plotted in Figure 14,
with a total number of groundwater pumping borewells in villages, passes through the transect AA’.
It is observed that the valleys are having a maximum number of borewells, as there is more probability
to get good borewell yield.

The groundwater recharging in the monsoon (Kharif) cropping season and the groundwater level
is at its highest level in a post-monsoon (rabi) season (Figure 14). This increased groundwater level
tempts the farmers to plant banana and sugarcane in rabi season. In the summer season, groundwater
irrigation continues with high evapotranspiration rate, which depletes groundwater at maximum level.
Majority of summer irrigated cropland situated in the valleys of the watershed and neighborhood of
water tank area. This overexploitation of groundwater and occupying the valleys for the cropping
obstructs the surface flow. At present, there is no surface flow in the berambadi watershed, and all water
bodies are completely dried, it happens first time in history after the construction of the berambadi
water tank. This intensive irrigation is disconnecting the base flow [3] and depleting groundwater
table in the valleys. This overexploitation of groundwater is affecting the ecosystem and creating
various environmental issues.

4. Conclusions

Characterizing the spatiotemporal evolution of irrigated croplands is essential for sustainable
resource exploitation in intensive agriculture areas. This study showed that available multitemporal
remote sense data could be used to retrieve historical evolution of irrigation and its impact on
groundwater resources. While we used Landsat multi-temporal imagery, it would be interesting
in future studies to apply our approach on Sentinel 2 time-series to compare the results obtained with
these two different types of datasets.

We have showed that the combined use of multispectral indices like NDVI (vegetation), EVI (soil
impact correction to vegetation) and NDMI (moisture) could provide accurate classification of irrigated
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cropland. Using SVM algorithm (trained with intensive ground sample dataset) allowed us to generate
irrigated cropland statistics for the past four decades in a semi-arid watershed in South India, which
was a challenge considering with the small plot dimensions (less than 0.5 ha). The resulting irrigated
and non-irrigated cropland classified maps were generated for rabi and summer seasons with high
classification accuracy and kappa coefficient.

Results show the contrasted spatial distribution of irrigated cropland in the watershed and
its evolution over time: while irrigation was developed very early in the valley areas in the East
(downstream), it expanded recently to all the upstream areas while decreasing in the East. This was
found consistent with the observed evolution of groundwater resources in the watershed: while in
the East part groundwater was severely depleted since 2010, the decline in water table levels is more
recent in the West.

The constructed irrigated cropland statistics can be used as an input to groundwater models for
understanding the interactions between climate, agricultural practices, and water resources. They are
also relevant to implement management strategies and support to policy making. Creating awareness
among the farmers to adopt sustainable agriculture practices would perhaps the only way to escape
from the onslaught of slow ecological disaster.
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