Archive d’étiquettes pour : Modelisation

Modeling reproductive traits of an invasive bivalve species under contrasting climate scenarios from 1960 to 2100

Mélaine Gourault, Sébastien Petton,Yoann Thomas, Laure Pecquerie, Gonçalo M. Marques, Christophe Cassou, Élodie Fleury,Yves-Marie Paulet et Stéphane Pouvreau

FAITS SAILLANTS

  • Le modèle DEB disponible pour l’huître du Pacifique a été appliqué dans un nouvel environnement côtier : la baie de Brest (France).
  • Cette version a été étalonnée avec succès à l’aide d’un nouvel ensemble de données couvrant 6 ans (de 2009 à 2014) de surveillance sur le terrain.
  • Le modèle a prédit avec succès en détail les processus de reproduction complexes de C. gigas, en particulier son comportement de frai.
  • Des simulations rétrospectives et prévisionnelles de la phénologie reproductive de C. gigas ont été effectuées à l’aide de scénarios du GIEC.

RÉSUMÉ

L’identification des facteurs qui contrôlent le succès de reproduction d’une population est essentielle pour prévoir les conséquences du changement climatique en termes de changement de distribution et de dynamique démographique. Dans la présente étude, nous avons cherché à mieux comprendre les conditions environnementales qui ont permis la colonisation de l’huître du Pacifique, Crassostrea gigas, dans la baie de Brest depuis son introduction dans les années 1960. Nous voulions également évaluer les conséquences potentielles du changement climatique futur sur son succès de reproduction et sur son expansion future.

Trois caractères reproductifs ont été définis pour étudier le succès de la reproduction : l’occurrence des pontes, la synchronicité entre individus et la fécondité individuelle. Nous avons simulé ces caractéristiques en appliquant une approche de modélisation individuelle à l’aide d’un modèle Dynamic Energy Budget (DEB). Tout d’abord, le modèle a été étalonné pour C. gigas dans la baie de Brest à l’aide d’un ensemble de données de surveillance sur 6 ans (2009-2014). Deuxièmement, nous avons reconstitué les conditions de température passées depuis 1960 afin d’exécuter le modèle à rebours (analyse rétrospective) et identifié l’émergence de conditions favorisant un succès croissant de la reproduction. Troisièmement, nous avons exploré les conséquences régionales de deux scénarios climatiques contrastés du GIEC (RCP2.6 et RCP8.5) sur le succès de reproduction de cette espèce dans la baie à l’horizon 2100 (analyse prévisionnelle). Dans les deux analyses, les variations des concentrations de phytoplancton étant alors inconnues dans le passé et imprévisibles dans l’avenir, nous avons fait l’hypothèse initiale que nos six années d’observation des concentrations de phytoplancton étaient suffisamment instructives pour représenter les “possibilités passées et futures” de la dynamique du phytoplancton dans la Baie de Brest. Par conséquent, la température est la variable que nous avons modifiée sous chaque cycle de prévision et de prévision a posteriori.

Les simulations rétrospectives ont montré que les épisodes de frai ont augmenté après 1995, ce qui concorde avec les observations faites sur la colonisation par C. gigas. Les simulations de prévision ont montré que dans le scénario le plus chaud (RCP8.5), le succès de reproduction serait amélioré par deux mécanismes complémentaires : une fraie plus régulière chaque année et une fraie potentiellement précoce, ce qui donnerait une phase larvaire synchronisée avec la période estivale la plus favorable. Nos résultats ont démontré que les dates de frai et la synchronicité entre les individus dépendaient principalement de la dynamique saisonnière du phytoplancton, et non de la température comme prévu. Des recherches futures axées sur la dynamique du phytoplancton dans différents scénarios de changement climatique amélioreraient grandement notre capacité à prévoir le succès de reproduction et la dynamique des populations de cette espèce et d’autres invertébrés semblables.

Figure 4 : Simulations de croissance et de frai d’huîtres obtenues par le modèle DEB par rapport aux données observées de 2009 à 2014 (DFM = Dry Flesh Mass). Le DFM observé est représenté par des points noirs avec des barres d’écart-type (n = 30). Les lignes grises représentent les trajectoires de croissance individuelles simulées par le modèle. La ligne rouge foncé en gras représente la moyenne des 30 trajectoires.

RÉFÉRENCE

Gourault, M., Petton, S., Thomas, Y., Pecquerie, L., Marques, G.M., Cassou, C., Fleury, E., Paulet, Y.-M., & Pouvreau, S. 2019. Modeling reproductive traits of an invasive bivalve species under contrasting climate scenarios from 1960 to 2100. Journal of Sea Research 143: 128–139. doi:10.1016/j.seares.2018.05.005.

Cliquer ici pour le site de la revue.

Influence of diatom diversity on the ocean biological carbon pump

Abstract

Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.

 

Graphical abstract

Reference

Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner,L., Dugdale, R., Finkel, Z., Ludicone, D., Jahn,O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M. & Pondaven, P. (2017). Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience 11, 27–37 (2017). doi:10.1038/s41561-017-0028-x

Nouvelles approches en écologie trophique

,

La compréhension du fonctionnement des écosystèmes passe par notre capacité à identifier les voies par lesquelles l’énergie et la matière transitent au sein des communautés. Cette description est compliquée en milieu marin par (1) la nature microscopique des sources ingérées par de nombreux organismes, (2) la variabilité spatio-temporelle du régime alimentaire des organismes, (3) les fortes capacités de mobilité de nombreuses espèces, qui ont ainsi la capacité de trouver leur alimentation dans de nombreux habitats différents, et (4) le caractère fortement opportuniste du point de vue alimentaire de nombreuses espèces. Comprendre les relations trophiques au sein des écosystèmes passe ainsi par notre capacité à étudier de manière empirique ces liens dans le milieu naturel, en décrire les variables forçantes via l’expérimentation, et en comprendre les conséquences, de l’organisme à l’écosystème, via des approches de modélisation. Dans ce contexte, le LEMAR a connu depuis quelques années un fort développement avec les recrutements de chercheurs, enseignants-chercheurs, ingénieurs et techniciens, et le développement de plateformes analytiques lui conférant une capacité inégalée en France dans le domaine de l’analyse isotopique et lipidique appliquée au milieu marin, ainsi que dans le domaine de la modélisation bioénergétique et écosystémique. Désormais mises en œuvre dans tous les milieux marins, côtiers et hauturiers, polaires, tempérés en tropicaux, sur de nombreux modèles biologiques et habitats, ces approches seront encore amenées à se développer au cours des prochaines années; elles apporteront de nouvelles perspectives dans la compréhension du fonctionnement des écosystèmes et des organismes marins.

Réponses adaptatives physiologiques et comportementales des organismes face aux contraintes environnementales multiples

,

Observation, expérimentation et modélisation

L’une des grandes forces de l’équipe PANORAMA réside dans l’étude des réponses physiologiques et comportementales des organismes marins face aux contraintes du milieu, qu’elles soient d’origines biotiques ou abiotiques. L’équipe s’efforce d’appréhender de façon monofactorielle ou multistress, sur différentes espèces présentes principalement dans les zones côtières, les effets de facteurs liés au changement climatique (réchauffement, acidification, hypoxie, contrainte nutritionnelle) et/ou de polluants émergents. Elle développe notamment des approches en écotoxicologie visant à étudier, sur différents modèles, l’impact des micro- et nanoplastiques, pour lesquels notre laboratoire est précurseur, ou celui des microalgues toxiques, qui représente aussi une des forces du laboratoire, ou bien encore celui de pollutions diffuses. Nous disposons de structures et de moyens expérimentaux et d’observation exceptionnels qui nous permettent de suivre l’effet de ces perturbations et contaminants, en grand volume et sur l’ensemble du cycle de vie des organismes : gamètes, embryons, larves, juvéniles et adultes. Grâce à cela, nous appréhendons également les effets inter et transgénérationnels des contaminants, polluants, microalgues toxiques et de leurs toxines. Nos approches expérimentales sont complétées par des études menées en parallèle dans le milieu naturel où des suivis d’observation (par ex., suivi d’efflorescences de microalgues toxiques) et des expérimentations in situ (par ex. expériences de caging) sont réalisés. Notre laboratoire est très présent sur la place brestoise, dans le cadre de collaborations soutenues avec le CEDRE et l’ANSES, mais aussi au niveau national, avec la participation active au GdR Écotoxicologie Aquatique, et l’animation du GdR PHYCOTOX et du GdR « Polymères et Océans ». Notre démarche intègre tous les niveaux d’organisation biologique grâce aux nouvelles approches « omiques » en écotoxicologie, en association avec des mesures de biologie cellulaire, d’histologie, et d’éco-physiologie. Nous complétons ce couplage observation, expérimentation par de la modélisation en lien avec l’AT « Couplage » et les modélisateurs de l’équipe DISCOVERY.

Archive d’étiquettes pour : Modelisation

MOQQA

, ,

Plankt’Eco

, ,

AWAFDA

,

MICROPLASTIC2