Noxious effects of the increasing eutrophication of coastal marine ecosystems: how far should we reduce the terrestrial nutrient loading?

Ð

frem

Contents

Eutrophication symptoms Main causes Management aspects The modelling tool Off-line scenario results On-line real-time modelling of risks Conclusion

Eutrophication symptoms

The ultimate threat: the « dead zones »

Diaz and Rosenberg

Science, August 2008

Hypoxia sites in the world

Hypoxia sites in Europe

- Baltic Sea
- Skagerrak, Kattegat
- North Sea
- British and French estuaries
- Northern Adriatic Sea and mediterranean lagoons
- Black Sea

Macroalgal proliferations « green tides »

The most <u>visible</u> form of eutrophication is made by green algae accumulation in very shallow areas:
bottom-fixed Enteromorpha in estuaries
free-floating Ulva on sandy beaches

Phytoplanktonic proliferations « coloured waters »

Phaeocystis Nord de la France

Noctiluca Bretagne-sud 2004

Lepidodinium

Toxic phytoplankton

The most <u>harmful</u> form of eutrophication <u>for the human consumer</u> is made by blooms of toxic phytoplanktonic species leading to <u>seashell contamination</u>. <u>N/P/Si</u> <u>increase enhances toxin production</u>

Main causes

The eutrophication tripod

Confinement

Horizontal weak residual currents

Illumination

Shallow waters

Clear waters

Nitrogen increase (case of Brittany)

Management aspects

The European Directives point of view

Good Environmental Status of the EU's marine waters by 2020

Water Frame Directive (2000) (for coastal water masses only)

Chlorophyll status from satellite data (2003-2008 period) Gohin et al.2010

Marine Strategy Frame Directive (2008) (for continental shelf sub-regions)

No legal threshold for marine nutriments !

For NO₃, the 50mg/L maximum admissible concentration is only for drinkable freshwater ; 50 mg/L NO₃ ≈ 10 times the freshwater pristine concentration ≈ 100 times the coastal marine pristine concentration !

Various national thresholds for marine chlorophyll !

Percentile 90:					
For France (Atlantic):	5	10	20	40	µg/L chlorophyll
For UK:	10	15	20	25	µg/L chlorophyll
For Spain (Biscay):	2	5	10	15	µg/L chlorophyll

Many small watersheds and few big ones involved in coastal marine enrichment

4 recurrent questions:

- What is the marine area influenced by each river?
- When several plumes merge in a coastal zone, what is the respective influence of each plume on the eutrophication?
- What would be the optimal nutrient reduction scenario for a given marine target?
- Can we provide real-time maps of risk for hypoxia or toxicity?

The modelling tool

The hydrodynamic MARS-3D model

The biogeochemical model ECO-MARS3D

Off-line scenario results

1/ Case of on-shore « green tides »

Simulation of reduction scenarios of nitrate river loading

Ifremer

2/ Case of off-shore « coloured waters »

Computing the statistical region of influence of a river

A conservative tracer is permanently forced to 1 in the river under study

Some results along the Atlantic-Channel coast

Optimising global nitrate reduction (ONEMA-Ifremer project)

<u>Principle</u>: In winter, nitrate is a conservative tracer

- Anywhere, marine nitrate concentration is a linear combination
 - of diluted river loadings and oceanic background
- → Linear optimization technique (Simplex) applies

- Which is the Good Ecological Status marine level?

15 μ mol/L NO₃ or more ?

- Which is the price of a 1mg/L NO₃ reduction in a river?

Homogeneous or Proportional to watershed area ?

- Which is the target area ?

A single WFD mass ? All the WFD masses together ? A MSFD sub-region ? A bathymetric stratum ?

Various optimised nitrate reductions

(ONEMA-Ifremer project)

For a single WFD water mass, different rivers may be chosen depending on the cost of nitrate reduction

Extending the target area involves more and more rivers

On-line real-time modelling of risks

On-line previsions on previmer.org website

Basic grid: the whole coastal waters off Brittany

Rubriques 🏼 🂔	Θ€C
Présentation	
Prévisions	
.: Courants	
.: Vagues	
-: Niveaux	
.: Température et salinité	

Fermeture de session

Accès rapide thématique 🥠

Production primaire rempérature et salinité Variable d'azote du phytoplancton total venant de la Loire

Displayed variables : -<u>Remote sensing data</u> (surface): **Temperature, Total chlorophyll** -<u>Simulations</u> (surface & bottom): Temperature, salinity, nitrate, phosphate, silicate, diatoms, dinoflagellates, nanoflagellates, (total chlorophyll), (SPM), % nitrogen coming from Loire, Pseudo-Nitzschia biomass ASP risk, dissolved oxygen

SOON: zooms with

500x500m meshes

7

Tracking river nitrogen on-line!

Concept : Tracking any evolutive signature in a distributed trophic network Ménesguen et al., 1997 MEPS ; Ménesguen et al., 2005 Limnol. Oceanogr.

For the biogeochemical state variable B_i, having the signature S(B_i):

- the current mass evolution equation is:
 - $dB_i/dt = sources(B_1, B_2, .., B_n, t)$

- sinks($B_1, B_2, ..., B_n, t$)

• the new « signed mass » evolution equation is:

 $dB_{i}/dt = sources(B_1, B_2, .., B_n, t) \times S(source)$

- sinks($B_1, B_2, .., B_n, t$) x S(B_i)

• the signature S(B_i) is:

 $S(B_i) = Bs_i / B_i$

Application :Diatom nitrogen fraction (%) coming from Loire river

Hypoxia alert on July 27th, 2007

ASP alert on May 12th, 2008

CONCLUSION

□ Eutrophication of many coastal waters is a <u>multisource phenomenon</u>, that will continue for many years. 3D modelling can help to determine more accurately in space and time <u>the nutrient sources which are the most responsible</u>.

 Hydrodynamical models can <u>delineate the statistical marine receiving</u> <u>area of any watershed</u>.
 Eco-hydrodynamical models can <u>track the chemical inputs of any</u> <u>watershed in the global trophic web all over the domain</u>.

□<u>Nitrogen</u> remains a <u>dominant control variable</u> in marine coastal ecosystems, and scenarios modelling points to <u>10mg/L NO₃ in river</u> waters as a good target for marine Good Ecological Status

Today, results of <u>operational 3D biogeochemical models</u> of the shelf can <u>daily provide on the Internet</u> some eutrophication descriptors: dissolved oxygen, total chlorophyll, toxic species abundance...

Thank you for your attention