

STRIKE-ALERT: TOWARDS REAL-TIME, HIGH RESOLUTION NAVIGATIONAL SOFTWARE FOR WHALE AVOIDANCE

> BÉNÉDICTE MADON¹, *RENÉ GARELLO*², ROMAIN DAVID³, LINWOOD PENDLETON¹, RONAN FABLET¹ ¹UBO/IUEM, ²IMT, ³IMBE

1. THE ISSUE

- 1.1 Whales vs Ships
- 3.2 Eco-System

2. AN OCEAN OF DATA

- 1.1 Whale watching
- 1.2 In situ sensors
- 1.3 Satellites

3. CONCEPTUAL APPROACH

- 2.1 Machine learning
- 2.2 Towards AI

4. OUTCOME

3.1 Conclusions

THE ISSUE

WHALES AS ECOSYSTEM ENGINEERS

- Fundamental ecological role
 - Exert important regulating effect on other species
 - Promote biodiversity
 - Shuttle nutrients
 - Contribute to carbon storage

Copyright Roman and McCarthy (2010) The whale pump: Marine mammals enhance primary productivity in a coastal basin (Image from Wikipedia Commons)

WHALE-SHIP STRIKES

AN OCEAN OF DATA

marine at contrientate

DATA SOURCES: ACOUSTICAL SURVEY

INT Atlantique Betagne-Pays de la Loire Coole Mines Fréderom

DATA SOURCES: REMOTE SENSING

Fretwell et al (2014) Whales from space: Counting Southern right wales by satellite. PlosOne e88655

DATA SOURCES: CROWDSOURCING

CONCEPTUAL APPROACH

REaltime Plotting of CETacean (<u>http://www.repcet.com/_en)</u>, Example of end-users

METHOD: MACHINE LEARNING

- Deluge of available data, BUT in need of interoperability (unit, time & space, etc...), synergy and models,
- Systems too difficult/expensive to manage manually,
- Systems that can automatically adapt and customize,
- Towards AI, as a help.

MACHINE LEARNING

After "Machine Learning", Dr. Lior Rokach, Ben-Gurion University

NEURAL NET - KALMAN

OUTCOME

TENTATIVE SCHEME

Team: ecologists, ICT, economists

CONCLUSION

- Maritime activities relies on the sustainable use of oceanic ecosystem services,
- Benefits ranging from food production to climate regulation,
- Whales, large influence on their ecosystem by controlling the biomass at lower trophic levels, shuttling nutrients throughout the water and contributing to carbon storage.
 - Concerns
 - underwater-noise-pollution
 - rising ship strikes
- Mitigation tools
 - understanding through variety of data sources
 - predicting, when, where and how ship strikes may occur

SUSTECH 2017 - PHOENIX, AZ - NOV. 2017